• 77 Accesses

Abstract

The basic mechanisms of protein synthesis are presumed to be identical in all cells. However, as detailed information accumulates on the comparative aspects of this process in the highly differentiated and diverse cells which comprise complex organisms, striking points of difference emerge. These differences appear to be derived principally from highly selective adaptations of the cell and its various protein-synthesizing systems to specific, but often changing, environments. The cellular and subcellular elements of the nervous system exhibit a remarkable degree of structural and functional specialization which may not be duplicated in other living systems. The mature neuron is generally isolated from the systemic environment by various barrier mechanisms and is intimately dependent for its sustenance upon neighboring nonneural elements. Moreover, neurons assume a variety of unique forms related to their specific functions. In some cases, the neuronal cell body is located at a great distance from its axonal extensions. These conditions place unusual demands and limitations upon the metabolic activities of both neurons and glia. In addition, the special requirements for information processing and storage undoubtedly contribute to the development of unique characteristics in the protein-synthesizing systems of these cells. The discussion which follows will summarize available information on the properties of protein-synthesizing systems in nervous tissues and will attempt to relate the findings to the special functions of these tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Lajtha, S. Furst, and H. Waelsch, The metabolism of the proteins of the brain, Experientia 13:168–172 (1957).

    Article  PubMed  CAS  Google Scholar 

  2. S. Furst, A. Lajtha, and H. Waelsch, Amino acid and protein metabolism of the brain—III. Incorporation of lysine into the proteins of various brain areas and their cellular fractions, J. Neurochem. 2:216–225 (1958).

    Article  PubMed  CAS  Google Scholar 

  3. D. H. Clouet and D. Richter, The incorporation of [35S]labelled methionine into the proteins of the rat brain, J. Neurochem. 3:219–229 (1959).

    Article  PubMed  CAS  Google Scholar 

  4. M. L. Petermann, The Physical and Chemical Properties of Ribosomes, Elsevier Publishing Co., Amsterdam (1964).

    Google Scholar 

  5. S. L. Palay and G. E. Palade, The fine structure of neurons, J. Biophys. Biochem. Cytol. 1:69–88(1955).

    Article  PubMed  CAS  Google Scholar 

  6. R. Ekholm and H. Hydén, Polysomes from microdissected fresh neurons, J. Ultrastruct. Res. 13:269–280(1965).

    Article  PubMed  CAS  Google Scholar 

  7. C. Sotelo and S. L. Palay, The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells, J. Cell Biol. 36:151–179 (1968).

    Article  Google Scholar 

  8. E. Mugnaini and F. Walberg, Ultrastructure of neuroglia, Ergeb. Anat. Entwicklung. 37:194–236(1964).

    CAS  Google Scholar 

  9. S.-O. Brattgård, J.-E. Edstrom, and H. Hydén, The chemical changes in regenerating neurons, J. Neurochem. 1:316–325 (1957).

    Article  PubMed  Google Scholar 

  10. D. Bodian, A suggestive relationship of nerve cell RNA with specific synaptic sites, Proc. Nat. Acad. Sci. U.S. 53:418–425 (1965).

    Article  CAS  Google Scholar 

  11. A. T. Campagnoni and H. R. Mahler, Isolation and properties of polyribosomes from cerebral cortex, Biochemistry 6:956–967 (1967).

    Article  PubMed  CAS  Google Scholar 

  12. C. E. Zomzely, S. Roberts, C. P. Gruber, and D. M. Brown, Cerebral protein synthesis.

    Google Scholar 

  13. II. Instability of cerebral messenger ribonucleic acid-ribosome complexes, J. Biol. Chem. 243:5396–5409(1968).

    Google Scholar 

  14. C. E. Zomzely, S. Roberts, D. M. Brown, and C. Provost, Cerebral protein synthesis. I. Physical properties of cerebral ribosomes and polyribosomes, J. Mol. Biol. 20:455–468 (1966).

    Article  Google Scholar 

  15. F. O. Wettstein, T. Staehelin, and H. Noll, Ribosomal aggregate engaged in protein synthesis: Characterization of the ergosome, Nature 197:430–435 (1963).

    Article  PubMed  CAS  Google Scholar 

  16. A. J. Munro, R. J. Jackson, and A. Korner, Studies on the nature of polysomes, Biochem. J. 92:289–299 (1964).

    PubMed  CAS  Google Scholar 

  17. S. H. Wilson and M. B. Hoagland, Studies on the physiology of rat liver polyribosomes: Quantitation and intracellular distribution of ribosomes, Proc. Nat. Acad. Sci. U.S. 54:600–607(1965).

    Article  CAS  Google Scholar 

  18. M. R. V. Murthy, Protein synthesis in growing-rat tissues. II. Polyribosome concentration of brain and liver as a function of age, Biochim. Biophys. Acta 119:599–613 (1966).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Takahashi, K. Mase, and H. Sugano, Preparation of polysomes from rat brain tissue, Biochim. Biophys. Acta 119:627–629 (1966).

    Article  PubMed  CAS  Google Scholar 

  20. C. Vesco and A. Giuditta, Disaggregation of brain polysomes induced by electroconvulsive treatment, J. Neurochem. 15:81–85 (1968).

    Article  PubMed  CAS  Google Scholar 

  21. S. H. Appel, W. Davis, and S. Scott, Brain polysomes: Response to environmental stimulation, Science 157:836–838 (1967).

    Article  PubMed  CAS  Google Scholar 

  22. M. R. V. Murthy and D. A. Rappoport, Biochemistry of the develo** rat brain. VI. Preparation and properties of ribosomes, Biochim. Biophys. Acta 95:132–145 (1965).

    Article  PubMed  CAS  Google Scholar 

  23. S. Yamagami, Y. Kawakita, and S. Naka, Some physical, chemical and biochemical properties of ribosomal RNA from guinea pig brain cortex, J. Neurochem. 12:607–611 (1965).

    Article  PubMed  CAS  Google Scholar 

  24. C. E. Zomzely, S. Roberts, D. M. Brown, and D. Rapaport, Isolation of 55-S ribonucleo-protein particles with amino acid-incorporating activity, Biochim. Biophys. Acta 103:529–531 (1965).

    Article  PubMed  CAS  Google Scholar 

  25. C. E. Zomzely, S. Roberts, and D. Rapaport, Regulation of cerebral metabolism of amino acids—III. Characteristics of amino acid incorporation into protein of microsomal and ribosomal preparations of rat cerebral cortex, J.Neurochem. 11:567–582 (1964).

    Article  PubMed  CAS  Google Scholar 

  26. J. M. Azcurra and O. Z. Sellinger, Cerebral microsomes. IV. On the attachment of ribosomes to the microsomal membranes of rat cerebral cortex, Brain Res. 6:359–362 (1967).

    Article  PubMed  CAS  Google Scholar 

  27. J. Samec, P. Mandel, and M. Jacob, Occurrence of light ribonucleoprotein (RNP) particles in the microsomal fraction of adult rat brain, J. Neurochem. 14:887–892 (1967).

    Article  PubMed  CAS  Google Scholar 

  28. R. K. Datta, Brain ribosomes, Brain Res. 2:301–322 (1966).

    Article  PubMed  CAS  Google Scholar 

  29. D. M. Schneider and S. Roberts, Base compositions of 18 S and 28 S RNA fractions from rat cerebral ribosomes, J. Neurochem. 15:1469–1471 (1968).

    Article  PubMed  CAS  Google Scholar 

  30. A. DiGirolamo, E. C. Henshaw, and H. H. Hiatt, Messenger ribonucleic acid in rat liver nuclei and cytoplasm, J.Mol. Biol. 8:479–488 (1964).

    Article  PubMed  CAS  Google Scholar 

  31. S. Katz and D. G. Comb, A new method for the determination of the base composition of ribonucleic acid, J. Biol. Chem. 238:3065–3067 (1963).

    PubMed  CAS  Google Scholar 

  32. M. Jacob, J. Samec, J. Stevenin, J. P. Garel, and P. Mandel, Polysomes and polysomal RNA of rat brain, J. Neurochem. 14:169–178 (1967).

    Article  PubMed  CAS  Google Scholar 

  33. C. Vesco and A. Giuditta, Pattern of RNA synthesis in rabbit brain, Biochim. Biophys. Acta 142:385–402(1967).

    Article  PubMed  CAS  Google Scholar 

  34. D. Elson, Ribosomal enzymes, in Enzyme Cytology (D. B. Roodyn, ed.) pp. 407–473, Academic Press, New York (1967).

    Google Scholar 

  35. J.-P. Waller and J. I. Harris, Studies on the composition of the protein from Escherichia coli ribosomes, Proc. Nat. Acad. Sci. U.S. 47:18–23 (1961).

    Article  CAS  Google Scholar 

  36. S. Roberts, Regulation of cerebral metabolism of amino acids—II. Influence of phenylalanine deficiency on free and protein-bound amino acids in rat cerebral cortex: Relationship to plasma levels, J.Neurochem. 10:931–940 (1963).

    Article  PubMed  CAS  Google Scholar 

  37. S. Moore, On the determination of cystine as cysteic acid, J. Biol. Chem. 238:235–237 (1963).

    CAS  Google Scholar 

  38. S. Yamagami, M. Masui, and Y. Kawakita, Preparation and properties of ribosomes from guinea pig brains, J. Neurochem. 10:849–850 (1963).

    Article  PubMed  CAS  Google Scholar 

  39. K. Tsukada and I. Lieberman, Protein synthesis by liver polyribosomes after partial hepatectomy, Biochem. Biophys. Res. Comm. 19:702–707 (1965).

    Article  PubMed  CAS  Google Scholar 

  40. P. Mandel, T. Borkowski, S. Harth, and R. Mardell, Incorporation of 32P in ribonucleic acid of subcellular fractions of various regions of the rat central nervous system, J. Neurochem. 8:126–138 (1961).

    Article  PubMed  CAS  Google Scholar 

  41. D. H. Adams, Some observations on the incorporation of precursors into ribonucleic acid of rat brain, J. Neurochem. 12:783–790 (1965).

    Article  PubMed  CAS  Google Scholar 

  42. D.H. Adams, The relationship between cellular nucleic acids in the develo** rat cerebral cortex, Biochem. J. 98:636–640 (1966).

    PubMed  CAS  Google Scholar 

  43. P. Mandel, H. Rein, S. Harth-Edel, and R. Mardell, in Comparative Neuro chemistry (D. Richter, ed.) pp. 149–163, Pergamon Press, Oxford (1964).

    Google Scholar 

  44. R. Landolt, H. H. Hess, and C. Thalheimer, Regional distribution of some chemical structural components of the human nervous system—I. DNA, RNA and ganglioside sialic acid, J. Neurochem. 13:1441–1452 (1966).

    Article  PubMed  CAS  Google Scholar 

  45. E. G. Gray, in Electron Microscopic Anatomy (S. M. Kurtz, ed.) pp. 369–417, Academic Press, New York (1964).

    Google Scholar 

  46. H. Hydén, in The Neuron (H. Hydén, ed.) pp. 179–219, Elsevier Publishing Co., New York (1967).

    Google Scholar 

  47. H. Hydén and A. Pigon, A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus, J. Neurochem. 6:57–72 (1960).

    Article  PubMed  Google Scholar 

  48. B. Daneholt and S.-O. Brattgård, A comparison between RNA metabolism of nerve cells and glia in the hypoglossal nucleus of the rabbit, J. Neurochem. 13:913–921 (1966).

    Article  PubMed  CAS  Google Scholar 

  49. E. Egyhazi, Microchemical fractionation of neuronal and glial RNA, Biochim. Biophys. Acta 114:516–526(1966).

    Article  PubMed  CAS  Google Scholar 

  50. A. Edstrom, The ribonucleic acid in the Mauthner neuron of the goldfish, J. Neurochem. 11:309–314(1964).

    Article  CAS  Google Scholar 

  51. E. Koenig, Synthetic mechanisms in the axon—II. RNA in myelin-free axons of the cat, J. Neurochem. 12:357–361 (1965).

    Article  PubMed  CAS  Google Scholar 

  52. N. Miani, A. Di Girolamo, and M. Di Girolamo, Sedimentation characteristics of axonal RNA in rabbit, J. Neurochem. 13:755–759 (1966).

    Article  PubMed  CAS  Google Scholar 

  53. L. Austin, J. J. Bray, and R. J. Young, Transport of proteins and ribonucleic acid along nerve axons, J. Neurochem. 13:1267–1269 (1966).

    Article  PubMed  CAS  Google Scholar 

  54. K. R. Brizzee, J. Vogt, and X. Kharetchko, Postnatal changes in glia/neuron index with a comparison of methods of cell enumeration in the white rat, Prog. Brain Res. 4:136–149 (1964).

    Article  Google Scholar 

  55. A. Hughes and L. B. Flexner, A study of the development of the cerebral cortex of the foetal guinea-pig by means of the ultra-violet microscope, J. Anat. 90:386–394 (1956).

    PubMed  CAS  Google Scholar 

  56. U. Ringborg, Composition and content of RNA in neurons of rat hippocampus at different ages, Brain Res. 2:296–298 (1966).

    Article  PubMed  CAS  Google Scholar 

  57. S. Roberts, C. E. Zomzely, and S. C. Bondy, Developmental alterations in cerebral ribonucleic acid and protein synthesis, in Cellular Aspects of Growth and Differentiation in Nervous Tissue (D. C. Pease, ed.) Univ. of Calif. Press (1971)!

    Google Scholar 

  58. S. C. Bondy and S. Roberts, Hybridizable ribonucleic acid of rat brain, Biochem. J. 109:533–541 (1968).

    PubMed  CAS  Google Scholar 

  59. M. Wender and M. Heerowski, Activation of amino acids by “pH 5 enzymes” in the develo** nervous system of guinea pigs, Acta Neurologica Scandinavica 38:Suppl. 1, 24–25(1962).

    Google Scholar 

  60. A. Edström, Effect of spinal cord transection on the base composition and content of RNA in the Mauthner nerve fibre of the goldfish, J.Neurochem. 11:557–559 (1964).

    Article  Google Scholar 

  61. G. Toschi, E. Dore, P. U. Angeletti, R. Levi-Montalcini, and Ch. de Haën, Characteristics of labeled RNA from spinal ganglia of chick embryo and the action of a specific growth factor (NGF), J. Neurochem. 13:539–544 (1966).

    Article  PubMed  CAS  Google Scholar 

  62. J. A. Burdman, Early effects of a nerve growth factor on the RNA content and base ratios of isolated chick embryo sensory ganglia neuroblasts in tissue culture, J. Neurochem. 14:367–371 (1967).

    Article  PubMed  CAS  Google Scholar 

  63. M. R. V. Murthy and D. A. Rappoport, Biochemistry of the develo** rat brain. V. Cell-free incorporation of L-[1-14C]leucine into microsomal protein, Biochim. Biophys. Acta 95:121–131 (1965).

    Article  PubMed  CAS  Google Scholar 

  64. M. V. Simpson and J. R. McLean, The incorporation of labeled amino acids into the cytoplasmic particles of rat muscle, Biochim. Biophys. Acta 18:573–575 (1955).

    Article  PubMed  CAS  Google Scholar 

  65. S.S. Oja, Studies on protein metabolism in develo** rat brain, Ann. Acad. Sci. Fennicae 131:1–81 (1967).

    Google Scholar 

  66. L. Austin and I. G. Morgan, Incorporation of 14C-labeled leucine into synaptosomes from rat cerebral cortex in vitro, J. Neurochem. 14:377–387 (1967).

    Article  CAS  Google Scholar 

  67. R. Balázs and W. A. Cocks, RNA metabolism in subcellular fractions of brain tissue, J. Neurochem. 14:1035–1055 (1967).

    Article  PubMed  Google Scholar 

  68. J. H. Sinclair, B. J. Stevens, N. Gross, and M. Rabinowitz, The constant size of circular mitochondrial DNA in several organisms and different organs, Biochim. Biophys. Acta 145:528–531 (1967).

    Article  PubMed  CAS  Google Scholar 

  69. M. Rabinowitz, J. Sinclair, L. DeSalle, R. Haselkorn, and H. H. Swift, Isolation of deoxyribonucleic acid from mitochondria of chick embryo heart and liver, Proc. Nat. Acad. Sci. U.S. 53:1126–1133 (1965).

    Article  CAS  Google Scholar 

  70. H. G. Du Buy, C. F. T. Mattern, and F. L. Riley, Comparison of the DNA’s obtained from brain nuclei and mitochondria of mice and from the nuclei and kinetoplasts of Leishmania enriettii, Biochim. Biophys. Acta 123:298–305 (1966).

    Article  Google Scholar 

  71. D. G. Humm and J. H. Humm, Hybridization of mitochondrial RNA with mitochondrial and nuclear DNA in agar, Proc. Nat. Acad. Sci. U.S. 55:114–119 (1966).

    Article  CAS  Google Scholar 

  72. M. E. Pullman and G. Schatz, Mitochondrial oxidations and energy coupling, Ann. Rev. Biochem. 36:539–610 (1967).

    Article  PubMed  CAS  Google Scholar 

  73. T. W. O’Brien and G. F. Kalf, Ribosomes from rat liver mitochondria. II. Partial characterization, J. Biol. Chem. 242:2180–2185 (1967).

    PubMed  Google Scholar 

  74. D. T. Dubin and R. E. Brown, A novel ribosomal RNA in hamster cell mitochondria, Biochim. Biophys. Acta 145:538–540 (1967).

    Article  PubMed  CAS  Google Scholar 

  75. S. Yamagami, Y. Kawakita, and S. Naka, Base composition of RNA of the subcellular fractions from guinea pig brains, J. Neurochem. 11:899–900 (1964).

    Article  PubMed  CAS  Google Scholar 

  76. F. E. Samson Jr., W. M. Balfour, and R. J. Jacobs, Mitochondrial changes in develo** rat brain, Am. J. Physiol. 199:693–696 (1960).

    PubMed  Google Scholar 

  77. A. T. Miller Jr., D. M. Conoly, M. Gabriel, and M. S. Handy, Mitochondrial regulation of tissue respiration, Am. J. Physiol. 197:653–656 (1959).

    PubMed  CAS  Google Scholar 

  78. D.M. Prescott, in Progress in Nucleic Acid Research and Molecular Biology (J.N. Davidson and W. E. Cohn, eds.) Vol. 3, pp. 33–57, Academic Press, New York (1964).

    Google Scholar 

  79. G. P. Georgiev, in Progress in Nucleic Acid Research and Molecular Biology (J.N. Davidson and W. E. Cohn, eds.) Vol. 6, pp. 259–351, Academic Press, New York (1967).

    Google Scholar 

  80. K. Matsuda and A. Siegel, Hybridization of plant ribosomal RNA to DNA: The isolation of a DNA component rich in ribosomal RNA cistrons, Proc. Nat. Acad. Sci. U.S. 58:673–680 (1967).

    Article  CAS  Google Scholar 

  81. R. P. Perry, in Progress in Nucleic Acid Research and Molecular Biology (J.N. Davidson and W. E. Cohn, eds.) Vol. 6, pp. 219–257, Academic Press, New York (1967).

    Google Scholar 

  82. S. H. Barondes, Studies with an RNA polymerase from brain, J. Neurochem. 11:663–669 (1964).

    Article  PubMed  CAS  Google Scholar 

  83. S. C. Bondy and H. Waelsch, RNA polymerase in the central nervous system, Life Sci. 3:633–636 (1964).

    Article  PubMed  CAS  Google Scholar 

  84. S. C. Bondy and H. Waelsch, Nuclear RNA polymerase in brain and liver, J. Neurochem. 12:751–756 (1965).

    Article  PubMed  CAS  Google Scholar 

  85. I. D. Herriman and G. D. Hunter, Cytoplasmic protein synthesis in mouse brain, J. Neurochem. 12:937–947 (1965).

    Article  PubMed  CAS  Google Scholar 

  86. S. Yamagami, R. R. Fritz, and D. A. Rappoport, Biochemistry of the develo** rat brain. VII. Changes in the ribosomal system and nuclear RNA’S, Biochim. Biophys. Acta 129:532–547 (1966).

    Article  PubMed  CAS  Google Scholar 

  87. S. C. Bondy and S. Roberts, Messenger ribonucleic acid of cerebral nuclei, Biochem. J. 105:1111–1118(1967).

    PubMed  CAS  Google Scholar 

  88. M. H. Samli and S. Roberts, Properties of RNA fractions from nuclei of brain cells which stimulate incorporation of amino acids by brain ribosomes, J. Neurochem. 16:1565–1580 (1969).

    Article  PubMed  CAS  Google Scholar 

  89. J. R. Warner, P. M. Knopf, and A. Rich, A multiple ribosomal structure in protein synthesis, Proc. Nat. Acad. Sci. U.S. 49:122–129 (1963).

    Article  CAS  Google Scholar 

  90. P. Volpe and A. Giuditta, Biosynthesis of RNA in neuron- and glia-enriched fractions, Brain Res. 6:228–240 (1967).

    Article  PubMed  CAS  Google Scholar 

  91. H. Koenig, An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis, J. Biophys. Biochem. Cytol. 4:785–792 (1958).

    Article  PubMed  CAS  Google Scholar 

  92. H. Hydén and E. Egyházi, Glial RNA changes during a learning experiment in rats, Proc. Nat. Acad. Sci. U.S. 49:618–624 (1963).

    Article  Google Scholar 

  93. D. R. Dahl and F. E. Samson Jr., Metabolism of rat brain mitochondria during postnatal development, Am. J. Physiol. 196:470–472 (1959).

    PubMed  CAS  Google Scholar 

  94. D. I. Kurtz and F. M. Sinex, Age related differences in the association of brain DNA and nuclear protein, Biochim. Biophys. Acta 145:840–842 (1967).

    Article  PubMed  CAS  Google Scholar 

  95. S. Roberts and C. E. Zomzely, in Protides of the Biological Fluids, Proceedings of the Thirteenth Colloquium, Bruges, 1965 (H. Peeters, ed.) Vol. 13, pp. 91–102, Elsevier Publishing Co., Amsterdam (1966).

    Google Scholar 

  96. L. Lim and D. H. Adams, Microsomal components in relation to amino acid incorporation by preparations from the develo** rat brain, Biochem. J. 104:229–238 (1967).

    PubMed  CAS  Google Scholar 

  97. M. Satake, Y. Takahashi, K. Mase, and K. Ogata, Protein biosynthesis in a cell-free system of the guinea pig brain. I. Incorporation in vitro of C14-leucine into protein by brain microsomes, J. Biochem. 56:504–511 (1964).

    PubMed  CAS  Google Scholar 

  98. D. H. Adams and L. Lim, Amino acid incorporation by preparations from the develo** rat brain, Biochem. J. 99:261–265 (1966).

    PubMed  CAS  Google Scholar 

  99. Y. Takahashi, K. Mase, and S. Abe, The protein biosynthesis in a ribosomal system of the brain, J. Biochem. 60:363–371 (1966).

    PubMed  CAS  Google Scholar 

  100. G. Acs, A. Neidle, and N. Schneiderman, The effect of fatty acids on amino acid incorporation, Biochim. Biophys. Acta 56:373–374 (1962).

    Article  PubMed  CAS  Google Scholar 

  101. A. L. Rubin and K. H. Stenzel, In vitro synthesis of brain protein, Proc. Nat. Acad. Sci. U.S. 53:963–968(1965).

    Article  CAS  Google Scholar 

  102. G. Acs, A. Neidle, and H. Waelsch, Brain ribosomes and amino acid incorporation, Biochim. Biophys. Acta 50:403–404 (1961).

    Article  PubMed  CAS  Google Scholar 

  103. A. Lajtha, in Chemical Pathology of the Nervous System (J. Folch-Pi, ed.) pp. 268–275, Pergamon Press, New York (1961).

    Google Scholar 

  104. M.K. Campbell, H. R. Mahler, W.J. Moore, and S. Tewari, Protein synthesis systems from rat brain, Biochemistry 5:1174–1184 (1966).

    Article  PubMed  CAS  Google Scholar 

  105. D. H. Clouet, M. Ratner, and N. Williams, [14C]leucine incorporation into brain ribo-somes, Biochim. Biophys. Acta 123:142–150 (1966).

    Article  PubMed  CAS  Google Scholar 

  106. K. H. Stenzel, R. F. Aronson, and A. L. Rubin, In vitro synthesis of brain protein. II. Properties of the complete system, Biochemistry 5:930–936 (1966).

    Article  PubMed  CAS  Google Scholar 

  107. M. R. V. Murthy, Protein synthesis in growing rat tissues. I. Effect of various metabolites and inhibitors on phenylalanine incorporation by brain and liver ribosomes, Biochim. Biophys. Acta 119:586–598 (1966).

    Article  PubMed  CAS  Google Scholar 

  108. S. H. Appel, Inhibition of brain protein synthesis: An approach to the biochemical basis of neurological dysfunction in the amino-acidurias, Trans. N.Y. Acad. Sci. 29:63–70 (1966).

    Article  PubMed  CAS  Google Scholar 

  109. Y. Takahashi and Y. Akabane, Protein metabolism of rat brain slices, Can. J. Biochem. Physiol. 38:1149–1157(1960).

    Article  PubMed  CAS  Google Scholar 

  110. J. Folbergrová, Incorporation of S35-methionine into proteins of brain cortex slices, Physiol. Bohemosloven. 10:122–129 (1961).

    Google Scholar 

  111. J. Folbergrová, The effect of potassium and some other factors upon the incorporation of S35-methionine into proteins of brain cortex slices, Physiol. Bohemosloven. 10:130–138 (1961).

    Google Scholar 

  112. J. Folbergrovâ, Incorporation of labeled amino acids into the proteins of brain cortex slices in vitro in the presence of other non-radioactive amino acids, J. Neurochem. 13:553–562(1966).

    Google Scholar 

  113. K. Mase, Y. Takahashi, and K. Ogata, The incorporation of [14C]glycine into the protein of guinea pig brain cortex slices, J.Neurochem. 9:281–288 (1962).

    Article  CAS  Google Scholar 

  114. S. Roberts and B. S. Morelos, Regulation of cerebral metabolism of amino acids—IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into protein in vivo,J. Neurochem. 12:373–387 (1965).

    Article  PubMed  CAS  Google Scholar 

  115. F. Orrego and F. Lipmann, Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids, J. Biol. Chem. 242:665–671 (1967).

    PubMed  CAS  Google Scholar 

  116. S. C. Bondy and S. V. Perry, Incorporation of labeled amino acids in the soluble protein fraction of rabbit brain, J. Neurochem. 10:603–609 (1963).

    Article  PubMed  CAS  Google Scholar 

  117. M. Revel and H.H. Hiatt, Magnesium requirement for the formation of an active messenger RNA-ribosome-S-RNA complex, J. Mol. Biol. 11:467–475 (1965).

    Article  PubMed  CAS  Google Scholar 

  118. A. Gierer, Function of aggregated reticulocyte ribosomes in protein synthesis, J. Mol. Biol. 6:148–157(1963).

    Article  PubMed  CAS  Google Scholar 

  119. J. O. Bishop, Reticulocyte ribosome fraction with an exceptional capacity for poly-phenylalanine synthesis, Nature 208:361–365 (1965).

    Article  PubMed  CAS  Google Scholar 

  120. H. Waelsch and A. Lajtha, Protein metabolism in the nervous system, Physiol. Rev. 41:709–736(1961).

    PubMed  CAS  Google Scholar 

  121. P. Weiss and H. B. Hiscoe, Experiments on the mechanism of nerve growth, J. Exp. Zool. 107:315–396(1948).

    Article  PubMed  CAS  Google Scholar 

  122. B. Droz and C. P. LeBlond, Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography, J. Comp. Neurol. 121:325–337 (1963).

    Article  PubMed  CAS  Google Scholar 

  123. S. H. Barondes, Delayed appearance of labeled protein in isolated nerve endings and axoplasmic flow, Science 146:779–781 (1964).

    Article  PubMed  CAS  Google Scholar 

  124. A. Edström, Amino acid incorporation in isolated Mauthner nerve fibre components, J. Neurochem. 13:315–321 (1966).

    Article  Google Scholar 

  125. B. Droz, Synthèse et transfert des protéines cellulaires dan les neurones ganglionnaires étude radioautographique quantitative en microscopie électronique, J. Microscopie 6:201–228(1967).

    CAS  Google Scholar 

  126. L. Z. Pevzner, Topochemical aspects of nucleic acid and protein metabolism within the neuron—neuroglia unit of the superior cervical ganglion, J. Neurochem. 12:993–1002 (1965).

    Article  PubMed  CAS  Google Scholar 

  127. D. H. Clouet and H. Waelsch, Amino acid and protein metabolism of the brain—VIII. The recovery of Cholinesterase in the nervous system of the frog after inhibition, J. Neurochem. 8:201–215 (1961).

    Article  PubMed  CAS  Google Scholar 

  128. E. Koenig and G. B. Koelle, Mode of regeneration of acetylcholinesterase in cholinergic neurons following irreversible inactivation, J. Neurochem. 8:169–188 (1961).

    Article  PubMed  CAS  Google Scholar 

  129. E. Koenig, Synthetic mechanisms in the axon—I. Local axonal synthesis of acetylcholinesterase, J. Neurochem. 12:343–355 (1965).

    Article  PubMed  CAS  Google Scholar 

  130. E. Koenig, Synthetic mechanisms in the axon—IV. In vitro incorporation of [3H]precursors into axonal protein and RNA, J. Neurochem. 14:437–446 (1967).

    Article  PubMed  CAS  Google Scholar 

  131. I. G. Morgan and L. Austin, Synaptosomal protein synthesis in a cell-free system, J. Neurochem. 15:41–51 (1968).

    Article  PubMed  CAS  Google Scholar 

  132. M. K. Gordon, K. G. Bench, G. G. Deanin, and M. W. Gordon, Histochemical and biochemical study of synaptic lysosomes, Nature 217:523–527 (1968).

    Article  PubMed  CAS  Google Scholar 

  133. Y. Takahashi, M. Nomura, and S. Furusawa, In vitro incorporation of [14C]-amino acids into proteins of peripheral nerve during Wallerian degeneration, J. Neurochem. 7:97–102 (1961).

    Article  CAS  Google Scholar 

  134. A. Edström, Inhibition of protein synthesis in Mauthner nerve fibre components by actinomycin-D, J. Neurochem. 14:239–243 (1967).

    Article  PubMed  Google Scholar 

  135. F. T. Mérei and F. Gallyas, Quantitative determination of the uptake of [35S]methionine in different regions of the normal rat brain, J. Neurochem. 11:257–264 (1964).

    Article  PubMed  Google Scholar 

  136. J. Altman, Differences in the utilization of tritiated leucine by single neurones in normal and exercised rats: An autoradiographic investigation with microdensitometry, Nature 199:777–780(1963).

    Article  PubMed  CAS  Google Scholar 

  137. G. P. Talwar, S. P. Chopra, B. K. Goel, and B. D’Monte, Correlation of the functional activity of the brain with metabolic parameters—III. Protein metabolism of the occipital cortex in relation to light stimulus, J. Neurochem. 13:109–116 (1966).

    Article  PubMed  CAS  Google Scholar 

  138. H. Hydén and P. W. Lange, Protein synthesis in the hippocampal pyramidal cells of rats during a behavioral test, Science 159:1370–1373 (1968).

    Article  PubMed  Google Scholar 

  139. F. T. Mérei and F. Gallyas, Protein metabolism of the CNS at high plasma sodium level studied with [35S]methionine, J. Neurochem. 11:265–270 (1964).

    Article  PubMed  Google Scholar 

  140. T. C. Johnson and M. W. Luttges, The effects of maturation on in vitro protein synthesis by mouse brain cells, J. Neurochem. 13:545–552 (1966).

    Article  PubMed  CAS  Google Scholar 

  141. K. Suzuki, S. R. Korey, and R. D. Terry, Studies on protein synthesis in brain microsomal system, J. Neurochem. 11:403–412 (1964).

    Article  PubMed  CAS  Google Scholar 

  142. Y. Takahashi and S. Abe, Distribution of amino acid activating enzymes in rabbit’s brain, Experientia 19:186–187 (1963).

    Article  CAS  Google Scholar 

  143. S. H. Appel, Turnover of brain messenger RNA, Nature 213:1253–1254 (1967).

    Article  CAS  Google Scholar 

  144. B. M. Lippe and C. M. Szego, Participation of adrenocortical hyperactivity in the suppressive effect of systemic actinomycin D on uterine stimulation by oestrogen, Nature 207:272–274 (1965).

    Article  PubMed  CAS  Google Scholar 

  145. R. Soeiro and H. Amos, mRNA half-life measured by use of actinomycin D in animal cells—a caution, Biochim. Biophys. Acta 129:406–409 (1966).

    Article  CAS  Google Scholar 

  146. M. K. Gaitonde and D. Richter, The metabolic activity of the proteins of the brain, Proc. Roy. Soc. (London) B 145:83–99 (1956).

    Article  CAS  Google Scholar 

  147. A. Lajtha, S. Furst, A. Gerstein, and H. Waelsch, Amino acid and protein metabolism of the brain—I. Turnover of free and protein bound lysine in brain and other organs, J. Neurochem. 1:289–300 (1957).

    Article  PubMed  CAS  Google Scholar 

  148. R. J. Schain, M. J. Carver, J. H. Copenhaver, and N. R. Underdahl, Protein metabolism in the develo** brain: Influence of birth and gestational age, Science 156:984–986 (1967).

    Article  PubMed  CAS  Google Scholar 

  149. A. A. Abdel-Latif and L. G. Abood, In vivo incorporation of L-(14C) serine into phospholipids and proteins of the subcellular fractions of develo** rat brain, J. Neurochem. 13:1189–1196(1966).

    Article  PubMed  CAS  Google Scholar 

  150. L. C. Mokrasch and P. Manner, Incorporation of 14C-amino acids and [14C]-palmitate into proteolipids of rat brains in vitro, J. Neurochem. 10:541–547 (1963).

    Article  CAS  Google Scholar 

  151. H. C. Agrawal, J. M. Davis, and W. A. Himwich, Postnatal changes in free amino acid pool of rat brain, J. Neurochem. 13:607–615 (1966).

    Article  PubMed  CAS  Google Scholar 

  152. B. M. Hanking and S. Roberts, Stimulation of protein synthesis in vitro by elevated levels of amino acids, Biochim. Biophys. Acta 104:427–438 (1965).

    Article  PubMed  CAS  Google Scholar 

  153. B. M. Hanking and S. Roberts, Influence of alterations in intracellular levels of amino-acids on protein-synthesizing activity of isolated ribosomes, Nature 207:862–864 (1965).

    Article  PubMed  CAS  Google Scholar 

  154. D. S. Beattie, R. E. Basford, and S. B. Koritz, The turnover of the protein components of mitochondria from rat liver, kidney, and brain, J. Biol. Chem. 242:4584–4586 (1967).

    PubMed  CAS  Google Scholar 

  155. I. A. Michaelson, The subcellular distribution of acetylcholine, choline acetyltransferase and acetyl Cholinesterase in nerve tissue, Ann. N.Y. Acad. Sci. 144:387–410 (1967).

    Article  PubMed  CAS  Google Scholar 

  156. C. B. Klee and L. Sokoloff, Mitochondrial differences in mature and immature brain. Influence on rate of amino acid incorporation into protein and responses to thyroxine, J. Neurochem. 11:709–716 (1964).

    Article  PubMed  CAS  Google Scholar 

  157. C. B. Klee and L. Sokoloff, Amino acid incorporation into proteolipid of myelin in vitro, Proc. Nat. Acad. Sci. U.S. 53:1014–1021 (1965).

    Article  CAS  Google Scholar 

  158. H. S. Bachelard, Amino acid incorporation into the protein of mitochondrial preparations from cerebral cortex and spinal cord, Biochem. J. 100:131–137 (1966).

    PubMed  CAS  Google Scholar 

  159. L. C. Mokrasch, Incorporation of [14C]amino acids into the proteolipid of subcellular preparations of rat brain in vitro, J. Neurochem. 13:49–58 (1966).

    Article  CAS  Google Scholar 

  160. D. Neubert and H. Helge, Studies on nucleotide incorporation into mitochondrial RNA, Biochem. Biophys. Res. Comm. 18:600–605 (1965).

    Article  PubMed  CAS  Google Scholar 

  161. S. H. Barondes, On the site of synthesis of the mitochondrial protein of nerve endings, J. Neurochem. 13:721–727 (1966).

    Article  PubMed  CAS  Google Scholar 

  162. L. B. Flexner, in Biochemistry of the Develo** Nervous System (H. Waelsch, ed.) pp. 281–300, Academic Press, New York (1955).

    Google Scholar 

  163. R. E. Kuhlman and O. H. Lowry, Quantitative histochemical changes during the development of the rat cerebral cortex, J. Neurochem. 1:173–180 (1956).

    Article  PubMed  CAS  Google Scholar 

  164. A. von der Decken, in Techniques in Protein Biosynthesis (P. N. Campbell and J. R. Sargent, ed.) Vol. 1, pp. 65–131, Academic Press, New York (1967).

    Google Scholar 

  165. K. S. McCarty, J. T. Parsons, W. A. Carter, and J. Laszlo, Protein-synthetic capacities of liver nuclear subfractions, J. Biol. Chem. 241:5489–5499 (1966).

    PubMed  CAS  Google Scholar 

  166. L. S. Hnilica, in Progress in Nucleic Acid Research and Molecular Biology (J.N. Davidson and W. E. Cohn, eds.) Vol. 7, pp. 25–106, Academic Press, New York (1967).

    Google Scholar 

  167. J. Bonner, M. E. Dahmus, D. Fambrough, R-C. C. Huang, K. Marushige, and D. Y. H. Tuan, The biology of isolated chromatin, Science 159:47–56 (1968).

    Article  CAS  Google Scholar 

  168. R. S. Piha, M. Cuénod, and H. Waelsch, Metabolism of histones of brain and liver, J. Biol. Chem. 241:2397–2404 (1966).

    PubMed  CAS  Google Scholar 

  169. B. W. Moore and D. McGregor, Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver, J. Biol. Chem. 240:1647–1653 (1965).

    PubMed  CAS  Google Scholar 

  170. B. W. Moore, A soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Comm. 19:739–744 (1965).

    Article  PubMed  CAS  Google Scholar 

  171. B.W. Moore and V.J. Perez, in Physiological and Biochemical Aspects of Nervous Integration (F. D. Carlson, ed.) pp. 343–359, Prentice-Hall, Englewood Cliffs, N.J. (1968).

    Google Scholar 

  172. G. Gombos, G. Vincendon, J. Tardy, and P. Mandel, Hétérogénéité électrophorétique et préparation rapide de la fraction protéique S 100, C. R. Acad. Sci. Paris 263:1533–1535 (1966).

    Google Scholar 

  173. B. S. McEwen and H. Hydén, A study of specific brain proteins on the semi-micro scale, J. Neurochem. 13:823–833 (1966).

    Article  PubMed  CAS  Google Scholar 

  174. B. S. McEwen, in Physiological and Biochemical Aspects of Nervous Integration (F. D. Carlson, ed.) pp. 361–381, Prentice-Hall, Englewood Cliffs, N.J. (1968).

    Google Scholar 

  175. H. Hydén and B. McEwen, A glial protein specific for the nervous system, Proc. Nat. Acad. Sci. U.S. 55:354–358 (1966).

    Article  Google Scholar 

  176. A. R. Dravid and J. A. Burdman, Acidic proteins in rat brain nuclei: Disc electrophoresis, J.Neurochem. 15:25–30 (1968).

    Article  CAS  Google Scholar 

  177. L. G. Tomasi and S. E. Kornguth, Characterization and cellular localization of a basic protein purified from pig brain, J. Cell Biol. 35, 133A (1967).

    Google Scholar 

  178. K. Warecka and H. Bauer, Studies on “brain-specific” proteins in aqueous extracts of brain tissue, J. Neurochem. 14:783–787 (1967).

    Article  PubMed  CAS  Google Scholar 

  179. R. H. Laatsch, M. W. Kies, S. Gordon, and E. C. Alvord, Jr., The encephalomyelitic activity of myelin isolated by ultracentrifugation, J. Exp. Med. 115:777–788 (1962).

    Article  PubMed  CAS  Google Scholar 

  180. R. F. Kibler and R. Shapira, Isolation and properties of an encephalitogenic protein from bovine, rabbit, and human central nervous system tissue, J. Biol. Chem. 234:281–286 (1968).

    Google Scholar 

  181. J. A. Burdman and A. R. Dravid, Isolation and separation of proteins from chick embryo sensory ganglia, Brain Res. 6:355–358 (1967).

    Article  PubMed  CAS  Google Scholar 

  182. D. Gandini-Attardi, P. Calissano, and P. Angeletti, Protein synthesis in embryonic sensory ganglia: Effect of the nerve growth factor on soluble proteins, Brain Res. 6:367–370 (1967).

    Article  PubMed  CAS  Google Scholar 

  183. M. Wender and Z. Waligóra, The content of amino acids in the proteins of the develo** nervous system of the guinea pig—I. Cerebral white matter, J. Neurochem. 7:259–263 (1961).

    Article  CAS  Google Scholar 

  184. M. Wender and Z. Waligóra, The content of amino acids in the proteins of the develo** nervous system of the guinea pig—II. Cerebral gray matter, J. Neurochem. 9:115–118 (1962).

    Article  CAS  Google Scholar 

  185. K. F. Swaiman and C. E. Nelson, Soluble protein nitrogen and total protein nitrogen in develo** rabbit brain, J. Neurochem. 14:905–910 (1967).

    Article  PubMed  CAS  Google Scholar 

  186. J. Folch-Pi, in Protides of the Biological Fluids, Proceedings of the Thirteenth Colloquium, Bruges, 1965 (H. Peeters, ed.) Vol. 13, pp. 21–34, Elsevier Publishing Co., Amsterdam (1966).

    Google Scholar 

  187. F. Wolfgram, The amino acid compositions of some non-neural proteolipid proteins, Biochim. Biophys. Acta 147:383–385 (1967).

    Article  PubMed  CAS  Google Scholar 

  188. D. S. Beattie, R. E. Basford, and S. B. Koritz, The inner membrane as the site of the in vitro incorporation of L-[14C]leucine into mitochondrial protein, Biochemistry 6:3099–3106(1967).

    Article  PubMed  CAS  Google Scholar 

  189. W. Neupert, D. Brdiczka, and Th. Bücher, Incorporation of amino acids into the outer and inner membrane of isolated rat liver mitochondria, Biochem. Biophys. Res. Comm. 27:488–493(1967).

    Article  PubMed  CAS  Google Scholar 

  190. V. P. Whittaker, I. A. Michaelson, and R. J. A. Kirkland, The separation of synaptic vesicles from nerve-ending particles (“synaptosomes”), Biochem. J. 90:293–303 (1964).

    PubMed  CAS  Google Scholar 

  191. P. R. Lewis and C. C. D. Shute, The distribution of Cholinesterase in cholinergic neurons demonstrated with the electron microscope, J. Cell. Sci. 1:381–390 (1966).

    PubMed  CAS  Google Scholar 

  192. E. Koenig, Synthetic mechanisms in the axon—III. Stimulation of acetylcholinesterase synthesis by actinomycin-D in the hypoglossal nerve, J. Neurochem. 14:429–435 (1967).

    Article  PubMed  CAS  Google Scholar 

  193. B. C. Goodwin and I. W. Sizer, Histone regulation of lactic dehydrogenase in embryonic chick brain tissue, Science 148:242–244 (1965).

    Article  PubMed  CAS  Google Scholar 

  194. Y. Takabatake and H. Sachs, Vasopressin biosynthesis. III. In vitro studies, Endocrinology 75:934–942(1964).

    Article  PubMed  CAS  Google Scholar 

  195. H. Borsook and C. L. Deasy, The metabolism of proteins and amino acids, Ann. Rev. Biochem. 20:209–226 (1951).

    Article  PubMed  CAS  Google Scholar 

  196. C. P. LeBlond and B. E. Walker, Renewal of cell populations, Physiol. Rev. 36:255–276 (1956).

    PubMed  CAS  Google Scholar 

  197. A. Lajtha, in Neuro chemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.) 2nd ed., pp. 399–430, Charles C. Thomas, Springfield, Ill. (1962).

    Google Scholar 

  198. C. E. Zomzely, S. Roberts, S. Peache, and D. M. Brown, Cerebral protein synthesis. III. Developmental alterations in the stability of cerebral messenger ribonucleic acid-ribosome complexes, J. Biol. Chem. 246: in press (1971).

    Google Scholar 

  199. E. Roberts, Models for correlative thinking about brain, behavior, and biochemistry, Brain Res. 2:109–144 (1966).

    Article  Google Scholar 

  200. C. E. Zomzely, S. Roberts, and S. Peache, Proc. Natl. Acad. Sci. US 67:644–651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Roberts, S. (1971). Protein Synthesis. In: Metabolic Turnover in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7166-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7166-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7168-1

  • Online ISBN: 978-1-4615-7166-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation