Detectors for Trace Organic Analysis by Liquid Chromatography: Principles and Applications

  • Chapter
Contemporary Topics in Analytical and Clinical Chemistry

Abstract

Although liquid column chromatography (LC) had been used as a means of chemical separation for many years prior to 1969, it was not accepted as a method useful for rapid, routine analysis, due to the relatively long times required to achieve resolution. Significant theoretical and technological advances have since been made in this field, and excellent separations can now be achieved within a few minutes using high-efficiency LC column packings. Liquid chromatography offers many advantages over gas-liquid chromatography (GLC) in that no restrictions are placed on the size, volatility, or thermal stability of the sample molecules. In addition, LC offers tremendous flexibility in the choice of mobile and stationary phases such that most sample components can be conveniently resolved using some appropriate combination of mobile and stationary phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.J. Kirkland, Preferred experimental conditions for trace analysis by modern liquid chromatography, Analyst, 99, 859–885 (1974).

    CAS  Google Scholar 

  2. C. N. Reilley, G. P. Hildebrand, and J. W. Ashley, Jr., Gas chromatographic response as a function of sample input profile, Anal. Chem., 34, 1198–1212 (1962).

    CAS  Google Scholar 

  3. P. T. Kissinger, C. S. Brundett, G. C. Davis, L. J. Felice, R. M. Riggin, and R. E. Shoup, Recent developments in the clinical assessment of aromatic metabolism by high-performance reverse-phase chromatography with amperometric detection Clin. Chem., 23, 1449–1455 (1977).

    CAS  Google Scholar 

  4. R. M. Riggin and P. T. Kissinger, Determination of catecholamines in urine by reverse-phase liquid chromatography with electrochemical detection, Anal. Chem., 49, 2109–2111 (1977).

    CAS  Google Scholar 

  5. I. G. McWilliam and H. C. Bolton, Instrumental peak distortion. I. Relaxation time effects, Anal. Chem., 41, 1755–1762 (1969).

    CAS  Google Scholar 

  6. I. G. McWilliam and H. C. Bolton, Instrumental peak distortion. III. The analysis of overlap** curves, Anal. Chem., 43, 883–889 (1971).

    CAS  Google Scholar 

  7. H. M. Gladney, B. F. Dowden, and J. D. Swalen, Computer assisted gas-liquid chromatography, Anal. Chem., 41, 883–888 (1969).

    CAS  Google Scholar 

  8. W. W. Yau, Characterizing skewed chromatographic band broadening, Anal. Chem. 49, 395–403 (1977).

    CAS  Google Scholar 

  9. R. E. Pauls and L. B. Rogers, Band broadening studies using parameters for an exponentially modified Gaussian, Anal. Chem., 49, 625–628 (1977).

    CAS  Google Scholar 

  10. E. Grushka, Characterization of exponentially modified Gaussian peaks in chromatography, Anal. Chem., 44, 1733–1738 (1972).

    CAS  Google Scholar 

  11. B. L. Karger, M. Martin, and G. Guiochon, Role of column parameters and injection volume on detection limits in liquid chromatography, Anal. Chem., 46, 1640–1647 (1974).

    CAS  Google Scholar 

  12. J. C. Sternberg, in: Advances in Chromatography (J. C. Giddings and R. A. Keller, eds.), Vol. 2, pp. 205–270, Marcel Dekker, New York (1966).

    Google Scholar 

  13. P. R. Griffiths, Recent applications of FT-IR spectrometry in chemical and environmental analysis, Appl. Spectrosc, 31, 497–505 (1977).

    CAS  Google Scholar 

  14. J. H. Ross and M. E. Casto, A method for high-temperature exclusion chromatography of polyethylenes, J. Polym. Sci. C, 21, 143–152 (1968).

    Google Scholar 

  15. R. Yost, J. Stoveken, and W. MacLean, Positive peak identification in LC using absorbance ratioing with a variable-wavelength spectrophotometric detector, J. Chromatogr., 134, 73–82 (1977).

    CAS  Google Scholar 

  16. R. N. Smith and M. Zetlein, Use of dual-wavelength detection in high-pressure liquid chromatography for the quantitative determination of unresolved or partially resolved compounds, J. Chromatogr., 130, 314–317 (1977).

    CAS  Google Scholar 

  17. R. G. Berg, C. Y. Ko, J. M. demons, and H. M. McNair, Characterization of unresolved components in high pressure liquid chromatography, Anal. Chem., 47, 2480–2482 (1975).

    CAS  Google Scholar 

  18. J. N. Little and G. J. Fallick, New considerations in detector-application relationships, J. Chromatogr., 112, 389–397 (1975).

    CAS  Google Scholar 

  19. J. M. Essigman and N. Catsimpoolas, Simple derivative mode detector for LC, J. Chromatogr., 103, 7–13 (1975).

    CAS  Google Scholar 

  20. A. Bylina, D. Sybilska, Z. R. Grabowski, and J. Koszewski, Rapid scanning spectrophotometry as a new system in chromatography, J. Chromatogr., 83, 357–362 (1973).

    CAS  Google Scholar 

  21. M. S. Denton, T. P. DeAngelis, A. M. Yacynych, W. R. Heineman, and T. W. Gilbert, Oscillating mirror rapid scanning ultraviolet-visible spectrometer as a detector for liquid chromatography, Anal. Chem., 48, 20–24 (1976).

    CAS  Google Scholar 

  22. A. McDowell and H. L. Pardue, Application of a vidicon tube as a multiwavelength detector for liquid chromatography, Anal. Chem., 48, 1815–1817 (1976).

    CAS  Google Scholar 

  23. K. M. Aldous and J. S. Garden, The use of a linear photodiode array in a multichannel detector for liquid chromatography, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy (March 1975), Paper #434.

    Google Scholar 

  24. R. E. Dessy, W. G. Nunn, C. A. Titus, and W. R. Reynolds, Linear photodiode array spectrometers as detector systems in automated liquid chromatographs, J. Chromatogr. Sci., 14, 195–200 (1976).

    Google Scholar 

  25. M. J. Milano, S. Lam, and E. Grushka, Rapid scanning diode array as a multi-wavelength detector in liquid chromatography. J. Chromatogr., 125, 315–326 (1976).

    CAS  Google Scholar 

  26. M. J. Milano and E. Grushka, Diode array detector in liquid chromatography, II. Enhanced sensitivity via first derivative (dA/dλ) chromatograms, J. Chromatogr., 133, 352–354 (1977).

    CAS  Google Scholar 

  27. Varian varichrom product literature, SEP-2005.

    Google Scholar 

  28. C. Bollet and M. Caude, Séparation par Chromatographie en phase liquide rapide des dérivés phénylthiohydantoine des amino-acides rencontrées lors de la dégradation d’Edman, J. Chromatogr., 121, 323–328 (1976).

    CAS  Google Scholar 

  29. C. L. Zimmerman, E. Appella, and J. J. Pisano, Advances in the analysis of amino acid phenylthiohydantoins by high performance liquid chromatography, Anal. Biochem., 75, 77–85 (1976).

    CAS  Google Scholar 

  30. I. Kato, W. J. Kohr, and M. Laskowski, Limited proteolyses of ovomucoids caused by staphylococcal proteinase, Federation of American Societies for Experimental Biology Abstract #2592 (1977).

    Google Scholar 

  31. J. F. Lawrence and R. W. Frei, Chemical Derivatization in Liquid Chromatography, Elsevier, Amsterdam (1976).

    Google Scholar 

  32. N. G. Anderson, R. H. Stevens, and J. W. Holleman, Analytical techniques for cell fractions. X. High-pressure ninhydrin reaction system, A nal. Biochem., 26, 104–117 (1968).

    CAS  Google Scholar 

  33. P. J. Lamothe and P. G. McCormick, Role of hydrindantin in the determination of amino acids using ninhydrin, Anal. Chem., 45, 1906–1911 (1973).

    CAS  Google Scholar 

  34. R. A. Henry, J. A. Schmit, and J. F. Dieckman, The analysis of steroids and derivatized steroids by high speed liquid chromatography, J. Chromatogr. Sci., 9, 513–520 (1971).

    CAS  Google Scholar 

  35. F. A. Fitzpatrick, S. Siggia, and J. Dingman, Sr., High speed liquid chromatography of derivatized urinary 17-keto steroids, Anal. Chem., 44, 2211–2216 (1972).

    CAS  Google Scholar 

  36. M. A. Carey and H. E. Persinger, Liquid chromatographic determination of traces of aliphatic carbonyl compounds and glycols as derivatives that contain the dinitrophenyl group. J. Chromatogr. Sci., 10, 537–543 (1972).

    CAS  Google Scholar 

  37. L. J. Papa and L. P. Turner, Chromatographic determination of carbonyl compounds as their 2,4-dinitrophenylhydrazones II. High pressure liquid chromatography, J. Chromatogr. Sci., 10, 747–750 (1972).

    CAS  Google Scholar 

  38. I. R. Politzer, G. W. Griffin, B. J. Dowty, and J. L. Laseter, Enhancement of ultraviolet detectability of fatty acids for purposes of liquid chromatographic-mass spectrometric analysis, Anal. Lett., 6, 539–546 (1973).

    CAS  Google Scholar 

  39. D. R. Knapp and S. Krueger, Use of O-p-nitrobenzyl-N,N′-diisopropylisourea as a chromogenic reagent for liquid chromatographic analysis of carboxylic acids, Anal. Lett., 8, 603–610(1975).

    CAS  Google Scholar 

  40. H. D. Durst, M. Milano, E. J. Kikta, Jr., S. A. Connelly, and E. Grushka, Phenacyl esters of fatty acids via crown ether catalysis for enhanced ultraviolet detection in liquid chromatography, Anal. Chem., 47, 1797–1801 (1975).

    CAS  Google Scholar 

  41. E. Grushka, H. D. Durst, and E. J. Kikta, Jr., Liquid chromatographic separation and detection of nanogram quantities of biologically important dicarboxylic acids, J. Chromatogr., 112, 673–678 (1975).

    CAS  Google Scholar 

  42. R. F. Borch, Separation of long chain fatty acids as phenacyl esters by high pressure liquid chromatography, Anal. Chem., 47, 2437–2439 (1975).

    CAS  Google Scholar 

  43. N. E. Hoffman and J. C. Liao, High pressure liquid chromatography of p-methox-yanilides of fatty acids, Anal. Chem., 48, 1104–1106, (1976).

    CAS  Google Scholar 

  44. W. Morozowich and S. L. Douglas, Resolution of prostaglandin p-nitrophenacyl esters by liquid chromatography and conditions for rapid, quantitative p-nitrophen-acylation, Prostaglandins, 10, 19–40 (1975).

    CAS  Google Scholar 

  45. M. V. Merritt and G. E. Bronson, High-performance liquid chromatography of p-nitrophenacyl esters of selected prostaglandins on silver ion-loaded microparticualte cation-exchange resin, Anal. Biochem., 80, 392–400 (1977).

    CAS  Google Scholar 

  46. W. Morozowich and S. L. Douglas, Detection of prostaglandins by HPLC after conversion to p-(9-anthroyloxy)phenacyl esters, Anal. Chem., submitted.

    Google Scholar 

  47. L. H. Thacker, A miniature flow fluorometer for liquid chromatography, J. Chromatogr., 73, 117–123 (1972).

    CAS  Google Scholar 

  48. J. C. Steichen, A dual-purpose absorbance fluorescence detector for high-pressure liquid chromatography, J. Chromatogr., 104, 39–45 (1975).

    CAS  Google Scholar 

  49. F. Martin, J. Maine, C. C. Sweeley, and J. F. Holland, A novel fluorescence detector for high-performance liquid chromatography, Clin. Chem., 22, 1434–1437 (1976).

    CAS  Google Scholar 

  50. W. Slavin, A. T. Williams, and R. F. Adams, A fluorescence detector for HPLC, J. Chromatogr., 134, 121–130 (1977).

    CAS  Google Scholar 

  51. G.J. Diebold and R. N. Zare, Laser fluorimetry: Subpicogram detection of anatoxins using high-pressure liquid chromatography, Science, 196, 1439–1441 (1977).

    CAS  Google Scholar 

  52. M. J. Sepaniak and E. S. Yeung, Laser two-photon excited fluorescence detection for high pressure liquid chromatography, Anal. Chem., 49, 1554–1556 (1977).

    CAS  Google Scholar 

  53. M.J. Wirth and F. E. Lytie, Two-photon excited molecular fluorescence in optically dense media, Anal. Chem., 49, 2054–2057 (1977).

    CAS  Google Scholar 

  54. H. Hatano, Y. Yamamoto, M. Saito, E. Mochida, and S. Watanabe, A high speed liquid Chromatograph with a flow-spectrofluorimetric detector and the ultramicro-determination of aromatic compounds, J. Chromatogr., 83, 373–380 (1973).

    CAS  Google Scholar 

  55. E. D. Pellizari and C. M. Sparacino, Scanning fluorescence spectrometry combined with ultraviolet detection of high pressure liquid chromatographic effluents, Anal. Chem., 45, 378–381 (1973).

    Google Scholar 

  56. J. R. Jadamec, W. A. Saner, and Y. Talmi, Optical multichannel analyzer for characterization of fluorescent liquid chromatographic petroleum fractions, Anal. Chem., 49, 1316–1321 (1977).

    CAS  Google Scholar 

  57. I. M. Warner, J. B. Callis, E. R. Davidson, and G. D. Christian, Multicomponent analysis in clinical chemistry by use of rapid scanning fluorescence spectroscopy, Clin. Chem., 22, 1483–1492 (1976).

    CAS  Google Scholar 

  58. J. F. McKay and D. R. Latham, Fluorescence spectrometry in the characterization of high-boiling petroleum distillates, Anal. Chem., 44, 2132–2137 (1972).

    CAS  Google Scholar 

  59. M. A. Fox and S. W. Staley, Determination of polycyclic aromatic hydrocarbons in atmospheric particulate matter by high pressure liquid chromatography coupled with fluorescence techniques, Anal. Chem., 48, 992–998 (1976).

    CAS  Google Scholar 

  60. J. A. Robertson, W. A. Pons, Jr., and L. A. Goldblatt, Preparation of aflatoxins and determination of their ultraviolet and fluorescent characteristics, J. Agric. Food Chem., 15, 798–801 (1967).

    CAS  Google Scholar 

  61. J. Chelkowski, Spectral behavior of aflatoxins in different solvents, Photochem. Photobiol., 20, 279–280 (1974).

    CAS  Google Scholar 

  62. W. Przybylski, Formation of anatoxin derivatives on thin layer chromatographic plates, J. Assoc.Off. Anal. Chem., 58, 163–164 (1975).

    CAS  Google Scholar 

  63. W. A. Pons, Jr., Resolution of aflatoxins Bl5 B2, G1 and G2 by high-pressure liquid chromatography J.Assoc. Off. Anal. Chem., 59, 101–105 (1976).

    CAS  Google Scholar 

  64. R. C. Garner, Aflatoxin separation by high-pressure liquid chromatography, J. Chromatogr., 103, 186–188 (1975).

    CAS  Google Scholar 

  65. L. M. Seitz, Comparison of methods for aflatoxin analysis by high pressure liquid chromatography, J. Chromatogr., 104, 81–89 (1975).

    CAS  Google Scholar 

  66. D. M. Takahashi, Reversed-phase high-performance liquid chromatographic analytical system for aflatoxins in wines with fluorescence detection, J. Chromatogr., 131, 147–156 (1977).

    CAS  Google Scholar 

  67. S. Udenfriend, S. Stein, P. Bohlen, W. Dairman, W. Leimgruber, and M. Weigele, Fluorescamine: A reagent for assay of amino acids, peptides, proteins and primary amines in the picomole range, Science, 178, 871–872 (1972).

    CAS  Google Scholar 

  68. S. DeBernardo, M. Weigele, V. Toome, K. Manhart, and W. Leimgruber, Studies on the kinetics of reaction and hydrolysis of fluorescamine, Arch. Biochem. Biophys., 163, 400–403 (1974).

    Google Scholar 

  69. R. W. Frei, L. Michel, and W. Santi, Post-column fluorescence derivatization of peptides: Problems and potential in high-performance liquid chromatography, J. Chromatogr., 126, 665–677 (1976).

    CAS  Google Scholar 

  70. J. A. F. de Silva and N. Strojny, Spectrofluorometric determination of pharmaceuticals containing aromatic or aliphatic primary amino groups as their fluorescamine (fluram) derivatives, Anal. Chem., 47, 714–718 (1975).

    Google Scholar 

  71. K. Samejima, Separation of fluorescamine derivatives of aliphatic diamines and polyamines by high-speed liquid chromatography, J. Chromatogr., 96, 250–254 (1974).

    CAS  Google Scholar 

  72. K. Imai, Fluorometric assay of dopamine, norepinephrine and their 3-O-methyl metabolites by using fluorescamine, J. Chromatogr., 105, 135–140 (1975).

    CAS  Google Scholar 

  73. M. Roth, Fluorescence reaction for amino acids, Anal. Chem., 43, 880–882 (1971).

    CAS  Google Scholar 

  74. S. S. Simons, Jr., and D. F. Johnson, The structure of the fluorescent adduct formed in the reaction of o-phthalaldehyde and thiols with amines, J. Am. Chem. Soc, 98, 7098–7099 (1976).

    CAS  Google Scholar 

  75. J. L. Meek, Application of inexpensive equipment for high pressure liquid chromatography to assays for taurine, γ-amino butyric acid and 5-hydroxytryptophan, Anal. Chem., 48, 375–379 (1976).

    CAS  Google Scholar 

  76. E. Bayer, E. Grom, B. Kaltenegger, and R. Uhmann, Separation of amino acids by high performance liquid chromatography, Anal. Chem., 48, 1106–1109 (1976).

    CAS  Google Scholar 

  77. R. W. Frei, W. Santi, and M. Thomas, Liquid chromatography of dansyl derivatives of some alkaloids and the application to the analysis of pharmaceuticals, J. Chromatogr., 116, 365–377 (1976).

    CAS  Google Scholar 

  78. R. W. Frei, J. F. Lawrence, J. Hope, and R. M. Cassidy, Analysis of carbamate insecticides by fluorogenic labeling and high-speed liquid chromatography, J. Chromatogr. Sci., 12, 40–44 (1974).

    CAS  Google Scholar 

  79. W. Dunges, High pressure liquid chromatographic analysis of barbituates in the picomole range by fluorometry of their DANS-derivatives, J. Chromatogr. Sci., 12, 655–657 (1974).

    CAS  Google Scholar 

  80. N. E. Newton, K. Ohno, and M. M. Abdel-Monem, Determination of diamines and polyamines in tissues by high-pressure liquid chromatography, J. Chromatogr., 124, 277–285 (1976).

    CAS  Google Scholar 

  81. S. Katz, W. W. Pitt, Jr., and G. Jones, Jr., Sensitive fluorescence monitoring of aromatic acids after anion-exchange chromatography of body fluids, Clin. Chem., 19, 817–820 (1973).

    CAS  Google Scholar 

  82. S. Katz, W. W. Pitt, Jr., and J. E. Mrochek, Comparative serum and urine analyses by dual detector anion-exchange chromatography, J. Chromatogr., 104, 303–310 (1975).

    CAS  Google Scholar 

  83. A. W. Wolkoff and R. H. Larose, A highly sensitive technique for the LC analysis of phenols and other environmental pollutants, J. Chromatogr., 99, 731–743 (1974).

    CAS  Google Scholar 

  84. P. A. Asmus, J. W. Jorgenson, and M. Novotny, Fluorescence enhancement, new selective detection principle for liquid chromatography, J. Chromatogr., 126, 317–325 (1976).

    CAS  Google Scholar 

  85. H. Small, T. S. Stevens, and W. C. Bauman, Novel ion exchange method using conductimetric detection, Anal. Chem., 47, 1801–1809 (1975).

    CAS  Google Scholar 

  86. C. Anderson, Ion chromatography: A new technique for clinical chemistry, Clin. Chem., 22, 1424–1426 (1976).

    CAS  Google Scholar 

  87. D. C. Johnson and J. Larochelle, Forced-flow liquid chromatography with a coulometric detector, Talanta, 20, 959–971 (1973).

    CAS  Google Scholar 

  88. R. J. Davenport and D. C. Johnson, Determination of nitrate and nitrite by forced-flow liquid chromatography with electrochemical detection, Anal. Chem., 46 1971–1978 (1974).

    CAS  Google Scholar 

  89. L. R. Taylor and D. C. Johnson, Determination of antimony using forced-flow liquid chromatography with a coulometric detector, Anal. Chem., 46, 262–266 (1974).

    CAS  Google Scholar 

  90. U. R. Tjaden, J. Lankelma, H. Poppe, and G. Munsze, Anodic coulometric detection with a glassy carbon electrode in combination with reversed-phase high-performance liquid chromatography, J. Chromatogr., 125, 275–286 (1976).

    CAS  Google Scholar 

  91. J. Lankelma and H. Poppe, Design and characterization of a coulometric detector with glassy carbon electrode for high-performance liquid chromatography, J. Chromatogr., 125, 375–378 (1976).

    CAS  Google Scholar 

  92. P. T. Kissinger, C. J. Refshauge, R. Dreiling, L. Blank, R. Freeman, and R. N. Adams, An electrochemical detector for liquid chromatography with picogram sensitivity, Anal. Lett., 6, 465–477 (1973).

    CAS  Google Scholar 

  93. B. Fleet and C. J. Litde, Design and evaluation of electrochemical detectors for HPLC, J. Chromatogr. Sci., 12, 747–152 (1974).

    CAS  Google Scholar 

  94. R. E. Shoup and P. T. Kissinger, A versatile thin-layer detector cell for high performance liquid chromatography, Chem. Instrum., 7, 171–177 (1976).

    CAS  Google Scholar 

  95. M. Karolczak, R. Dreiling, R. N. Adams, L. J. Felice, and P. T. Kissinger, Electrochemical techniques for study of phenolic natural products and drugs in microliter volumes, Anal. Lett., 9, 783–793 (1976).

    CAS  Google Scholar 

  96. S. C. Rifkin and D. H. Evans, Analytical evaluation of differential pulse voltammetry at stationary electrodes using computer-based instrumentation, Anal. Chem., 48, 2174–2180 (1976).

    CAS  Google Scholar 

  97. D. G. Swartzfager, Amperometric and differential pulse voltammetric detection in high performance liquid chromatography, Anal. Chem., 48, 2189–2192 (1976).

    CAS  Google Scholar 

  98. C. L. Blank, Dual electrochemical detector for liquid chromatography, J. Chromatogr., 117, 35–46 (1976).

    CAS  Google Scholar 

  99. R. Keller, A. Oke, I. Mefford, and R. N. Adams, Liquid chromatographic analysis of catecholamines. Routine assay for regional brain map**, Life Sci., 19, 995–1004 (1976).

    CAS  Google Scholar 

  100. R. E. Shoup and P. T. Kissinger, Determination of urinary normetanephrine, metanephrine, and 3-methoxytyramine utilizing liquid chromatography with amperometric detection, Clin. Chem., 23, 1268–1274 (1977).

    CAS  Google Scholar 

  101. P. H. Zoutendam, C. S. Bruntlett, and P. T. Kissinger, Determination of homogentisic acid in serum and urine by liquid chromatography with amperometric detection, Anal. Chem., 48, 2200–2202 (1976).

    CAS  Google Scholar 

  102. K. V. Thrivikraman, C. Refshauge, and R. N. Adams, Liquid chromatographic analysis of nanogram quantities of ascorbate in brain tissue, Life Sci., 15, 1335–1338 (1974).

    CAS  Google Scholar 

  103. L. A. Pachla and P. T. Kissinger, Determination of ascorbic acid in body fluids, foodstuffs, and pharmaceuticals by liquid chromatography with electrochemical detection, Anal. Chem., 48, 364–367 (1976).

    CAS  Google Scholar 

  104. R. M. Riggin, A. L. Schmidt, and P. T. Kissinger, Determination of acetaminophen in pharmaceutical preparations and body fluids by high performance liquid chromatography with electrochemical detection, J. Pharm. Sci., 64, 680–683 (1975).

    CAS  Google Scholar 

  105. L. A. Pachla and P. T. Kissinger, Oxidative reaction detector for liquid chromatography using thin-layer amperometric detection, manuscript in preparation.

    Google Scholar 

  106. L. J. Felice, W.. P. King, and P. T. Kissinger, A new liquid chromatographic approach to plant phenolics. Application to the determination of chlorogenic acid in sunflower meal, J. Agric. Food Chem., 24, 380–382 (1976).

    CAS  Google Scholar 

  107. T. M. Kenyhercz and P. T. Kissinger, Determination of diethylstilbestrol residues by reverse-phase liquid chromatography with amperometric detection, J. Anal. Toxicol., in press.

    Google Scholar 

  108. I. Mefford, R. W. Keller, R. N. Adams, L. A. Sternson, and M. S. Yllo, Liquid chromatographic determination of picomole quantities of aromatic amine carcinogens, Anal. Chem., 49, 683 (1977).

    CAS  Google Scholar 

  109. D. R. Koch and L. A. Pachla, unpublished results.

    Google Scholar 

  110. W. P. King, K.J. Thengumthyil, and P. T. Kissinger, unpublished results.

    Google Scholar 

  111. R. M. Riggin, M.J. McCarthy, and P. T. Kissinger, Identification of salsolinol as a major dopamine metabolite in the banana, J. Agric. Food Chem., 24, 189–191 (1976).

    CAS  Google Scholar 

  112. Y. Takata and G. Muto, Flow coulometric detector for liquid chromatography, Anal. Chem., 45, 1864–1868 (1974).

    Google Scholar 

  113. M. Lemar and M. Porthault, Amperometric detection in high performance liquid chromatography in the case of nonconducting eluants, J. Chromatogr., 130, 373 (1977).

    CAS  Google Scholar 

  114. P. T. Kissinger, Amperometric and coulometric detectors for high-performance liquid chromatography, Anal. Chem., 49, 447A–456A (1977).

    CAS  Google Scholar 

  115. P. T. Kissinger, Electrochemical detectors for liquid chromatography, Adv. Chromatogr., manuscript in preparation.

    Google Scholar 

  116. D. M. Coulson, Electrolytic conductivity detector for gas chromatography, J. Gas Chromatogr., 3, 134–137 (1965).

    CAS  Google Scholar 

  117. J. W. Dolan and J. N. Seiber, Chlorine-selective detection for liquid chromatography with a Coulson electrolytic conductivity detector, Anal. Chem., 49, 326–331 (1977).

    CAS  Google Scholar 

  118. H. Malissa, J. Rendl, and W. Buchberger, Ein schwefelselektiven Detektor für die Flüssigkeitschromatographie auf konduktometrischer Basis, Anal. Chim. Acta, 90 137–141 (1977).

    CAS  Google Scholar 

  119. R. C. Hall, A highly sensitive and selective microelectrolytic conductivity detector for gas chromatography, J. Chromatogr. Sci., 12, 152–160 (1974).

    CAS  Google Scholar 

  120. D. R. Jones IV and S. E. Manahan, Atomic absorption detector for chromium organometallic compounds separated by HSLC, Anal. Lett, 8, 569–574 (1975).

    CAS  Google Scholar 

  121. D. R. Jones IV and S. E. Manahan, Aqueous phase high speed liquid chromatographic separation and atomic absorption detection of amino carboxylic acid-copper chelates, Anal. Chem., 48, 502–505 (1976).

    CAS  Google Scholar 

  122. D. R. Jones IV, H. C. Tung, and S. E. Manahan, Mobile phase effects on atomic absorption detectors for high speed liquid chromatography, Anal. Chem., 48, 7–10 (1976).

    CAS  Google Scholar 

  123. D. R. Jones IV and S. E. Manahan, Detection limits for flame spectrophotometric monitoring of high speed liquid chromatographic effluents, Anal. Chem., 48, 1897–1899 (1976).

    CAS  Google Scholar 

  124. D. J. Freed, Flame photometric detector for liquid chromatography, Anal. Chem., 47, 186–187 (1975).

    CAS  Google Scholar 

  125. B. G. Julin, H. W. Vanderborn, and J. J. Kirkland, Selective flame emission detection of phosphorous and sulfur in high-performance liquid chromatography, J. Chromatogr., 112, 443–453 (1975).

    CAS  Google Scholar 

  126. D. H. Fine, F. Rufeh, D. Lieb, and D. P. Rounbehler, Description of the thermal energy analyzer (TEA) for trace determination of volatile and nonvolatile iV-nitroso compounds, Anal. Chem., 47, 1188–1191 (1975).

    CAS  Google Scholar 

  127. P. E. Oettinger, F. Huffman, D. H. Fine, and D. Lieb, Liquid Chromatograph detector for trace analysis of non-volatile iV-nitroso compounds, Anal. Lett., 8, 411–414 (1975).

    CAS  Google Scholar 

  128. D. H. Fine, An organic nitrogen specific detector for HPLC, Anal. Lett., 10, 305–307 (1977).

    CAS  Google Scholar 

  129. J. T. Schmermund and D. C. Locke, A universal photoionization detector for liquid chromatography, Anal. Lett, 8, 611–625 (1975).

    CAS  Google Scholar 

  130. E. Haahti and T. Nikkari, Continuous detection of fractions in effluents of silicic acid chromatography, Acta Chem. Scand., 17, 2565–2568 (1973).

    Google Scholar 

  131. R. J. Maggs, Commercial detector for monitoring the eluent from liquid chromatographic columns, Chromatographia, 1, 43–48 (1968).

    Google Scholar 

  132. R. P. W. Scott and J. G. Lawrence, An improved moving wire liquid chromatography detector, J. Chromatogr. Sci., 8, 65–71 (1970).

    CAS  Google Scholar 

  133. J. H. van Dijk, Sensitivity improvement of a moving wire liquid chromatography detector, J. Chromatogr. Sci., 10, 31–34 (1972).

    Google Scholar 

  134. R. H. Stevens, Noise reduction in flame ionization type LC monitors: Development of an improved method for sample transport, J. Gas Chromatogr., 6, 375–383 (1968).

    CAS  Google Scholar 

  135. V. Pretorius and J. F.J. van Rensburg, Improvements to the wire solute transport detector, J. Chromatogr. Sci., 11, 355–357 (1973).

    CAS  Google Scholar 

  136. H. Dubsky, A disc detector for liquid chromatography, J. Chromatogr., 71, 395–403 (1972).

    CAS  Google Scholar 

  137. J. J. Szakasits and R. E. Robinson, Disk conveyor flame ionization detector for liquid chromatography, Anal. Chem., 46, 1648–1652 (1974).

    CAS  Google Scholar 

  138. A. Stolywho, O. S. Privett, and W. L. Erdahl, An improved FID and associated transport system for LCJ. Chromatogr. Sci., 11, 263–267 (1973).

    Google Scholar 

  139. O. S. Privett and W. L. Erdahl, in: Anal. Lipids Lipoproteins 1975 (E. G. Perkins, ed.), pp. 123–137, American Oil Chemists’ Society, Champaign, Illinois (1975).

    Google Scholar 

  140. O. S. Privett, personal communication (actual chromatographic conditions unknown).

    Google Scholar 

  141. L. S. Snyder, personal communication.

    Google Scholar 

  142. R. J. Maggs, Use of the electron capture detector as a monitor for liquid Chromatograph columns, Column, 2(4), 5–7 (1968).

    CAS  Google Scholar 

  143. F. W. Willmott and R. J. Dolphin, A novel combination of liquid chromatography and electron capture detection in the analysis of pesticides, J. Chromatogr. Sci., 12, 695–700 (1974).

    CAS  Google Scholar 

  144. The application of an electron capture detector to liquid chromatography, Liquid Chromatography Application 13, Philips Electronic Instruments, Mount Vernon, New York.

    Google Scholar 

  145. H.-R. Schulten and H. D. Beckey, Potentiality of the coupling of column liquid chromatography and field desorption mass spectrometry, J. Chromatogr., 83, 315–320 (1973).

    CAS  Google Scholar 

  146. R. E. Lovins, S. R. Ellis, G. D. Tolbert, and C. R. McKinney, Liquid chromatographymass spectrometry. Coupling of a liquid Chromatograph to a mass spectrometer, Anal. Chem., 45, 1553–1556 (1973).

    CAS  Google Scholar 

  147. R. P. W. Scott, C. G. Scott, M. Munroe, and J. Hess, Jr., Interface for on-line liquid chromatography-mass spectroscopy analysis, J. Chromatogr., 99, 395–405 (1974).

    CAS  Google Scholar 

  148. W. H. McFadden, H. L. Schwartz, D. C. Bradford, and L.H. Wright, Applications of combined liquid chromatography/mass spectrometry, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Cleveland, Ohio, February 28-March 4 (1977).

    Google Scholar 

  149. P. Arpino, M. A. Baldwin, and F. W. McLafferty, Liquid chromatography-mass spectrometry II—continuous monitoring, Biomed. Mass Spectrom., 1, 80–82 (1974).

    CAS  Google Scholar 

  150. F. W. McLafferty, R. Knutti, R. Venkataraghavan, P.J. Arpino, and B. G. Dawkins, Continuous mass spectrometric monitoring of a liquid Chromatograph with subnanogram sensitivity using an on-line computer, Anal. Chem., 47, 1503–1505 (1975).

    CAS  Google Scholar 

  151. E. C. Horning, D. I. Carroll, I. Dzidic, K. D. Haegele, M. G. Horning, and R. N. Stillwell, Liquid chromatograph-mass spectrometer-computer analytical systems. A continuous-flow system based on atmospheric pressure ionization mass spectrometry, J. Chromatogr., 99, 13–21 (1974).

    CAS  Google Scholar 

  152. D. I. Carroll, I. Dzidic, R. N. Stillwell, K. D. Haegele, and E. C. Horning, Atmospheric pressure ionization mass spectrometry: Corona discharge ion source for use in liquid chromatograph-mass spectrometer-computer analytical system, Anal. Chem., 47, 2369–2372 (1975).

    CAS  Google Scholar 

  153. P. R. Jones and S. K. Yang, A liquid chromatograph/mass spectrometer interface, Anal. Chem., 47, 1000–1003 (1975).

    CAS  Google Scholar 

  154. L. R. Snyder and J. J. Kirkland, Introduction To Modern Liquid Chromatography, pp. 149–153, Wiley, New York, (1974).

    Google Scholar 

  155. H. Poppe and J. Kuysten, Construction and evaluation of a thermostatted permittivity detector for high performance column liquid chromatography, J. Chromatogr., 132, 369–378 (1977).

    CAS  Google Scholar 

  156. R. Vespalec and K. Hána, Performance of the capacitance detector for liquid chromatography, J. Chromatogr., 65, 53–69 (1972).

    CAS  Google Scholar 

  157. S. Haderka, Permittivity and conductivity detectors for liquid chromatography, J. Chromatogr., 91, 167–179 (1974).

    CAS  Google Scholar 

  158. P. H. Monaghan, P. B. Moseley, T. S. Burkhalter, and O. A. Nance, Detection of chromatographic zones by means of high frequency oscillators, Anal. Chem., 24, 193–195 (1952).

    CAS  Google Scholar 

  159. N. Watanabe, M. Azuma, and E. Niki, Study of a dielectric constant detector for high-speed liquid chromatography, Bunseki Kagaku, 26, 295–300 (1977).

    CAS  Google Scholar 

  160. W. F. Erbelding, Dielectric constant detector for liquid chromatography, Anal. Chem. 47, 1983–1987 (1975).

    CAS  Google Scholar 

  161. S. Haderka, The prospects of selective detection by capacitance detectors in liquid chromatography, J. Chromatogr., 57, 181–191 (1971).

    CAS  Google Scholar 

  162. L. N. Klatt, Universal detector for liquid chromatography based upon dielectric constant, Anal. Chem., 48, 1845–1850 (1976).

    CAS  Google Scholar 

  163. M. Krejčí and N. Pospíšilova, Experimental comparisons of some detectors used in high-efficiency liquid chromatography, J. Chromatogr., 73, 105–115 (1972).

    Google Scholar 

  164. R. Vespalec, Improvement of the performance of the capacitance detector for liquid chromatography, J. Chromatogr., 108, 243–254 (1975).

    CAS  Google Scholar 

  165. G. C. Claxton, Detector for liquid chromatography, J. Chromatogr., 2, 136–139

    Google Scholar 

  166. K.-P. Hupe and E. Bayer, A micro adsorption detector for general use in liquid chromatography, J. Gas Chromatogr., 5, 197–201 (1967).

    CAS  Google Scholar 

  167. M. N. Munk and D. N. Raval, Flow sensitivity of micro adsorption detector, J. Chromatogr. Sci., 7, 48–55 (1969).

    CAS  Google Scholar 

  168. R. P. W. Scott, A theoretical treatment of the heat-of-adsorption detector, J. Chromatogr. Sci., 11, 349–357 (1973).

    CAS  Google Scholar 

  169. H. P. Warren and D. P. McKay, The response of the micro adsorption detector to inorganic cations, J. Chromatogr. Sci., 13, 117–122 (1975).

    CAS  Google Scholar 

  170. M. N. Munk, Some practical aspects of the micro adsorption detector, Am. J. Clin. Pathol, 53, 719–730 (1970).

    CAS  Google Scholar 

  171. H. M. McNair and D. T. Stafford, Micro-adsorption detector. I. Principles of operation and mechanisms of response, J. Chromatogr. 133, 31–36 (1977).

    CAS  Google Scholar 

  172. G. B. Sieswerda, H. Poppe, and J. F. K. Huber, Flow versus batch detection of radioactivity in column liquid chromatography, Anal. Chim. Acta, 78, 343–358 (1975).

    CAS  Google Scholar 

  173. K. A. Piez, Continuous scintillation counting of carbon-14 and tritium in effluent of the automatic amino acid analyzer, Anal. Biochem., 4, 444–458 (1962).

    CAS  Google Scholar 

  174. J. de Belleroche, C. R. Dykes, and A. J. Thomas, The automated separation and analysis of dopamine, its amino acid precursors and metabolites, and the application of the method to the measurement of specific radioactivities of dopamine in striatial symaptosomes, Anal. Biochem., 71, 193–203 (1976).

    Google Scholar 

  175. R. N. Bracewell, The Fourier Transform and its Applications, pp. 24–48, McGraw-Hill New York (1965).

    Google Scholar 

  176. E. Grushka, Characterization of exponentially modified Gaussian peaks in chromatography, Anal. Chem., 44, 1733–1738(1972).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Kissinger, P.T., Felice, L.J., Miner, D.J., Preddy, C.R., Shoup, R.E. (1978). Detectors for Trace Organic Analysis by Liquid Chromatography: Principles and Applications. In: Hercules, D.M., Hieftje, G.M., Snyder, L.R., Evenson, M.A. (eds) Contemporary Topics in Analytical and Clinical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6731-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6731-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6733-2

  • Online ISBN: 978-1-4615-6731-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation