Role of the Nervous System in Human Hypertension

  • Chapter
Atlas of Hypertension
  • 231 Accesses

Abstract

Despite early demonstrations that sympathetic activation elevates blood pressure and early clinical inklings that human hypertension may have a psychosomatic component, the pivotal role of the nervous system in human hypertension is only recently being clarified. There are two reasons for this delayed appreciation of the role the autonomic nervous system plays in the genesis and maintenance of blood pressure elevation in hypertension. The first deals with the complexities involved in the evaluation of autonomic function in humans, and the second is that hypertension is a dynamic process in which the manifestations of autonomic overactivity change with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Owsjannikow PH: Die tonische und reflectorische centren de gefassnervum. Verh K Sachs Ges Wisse 1871,23:134.

    Google Scholar 

  2. Loewy AD: Anatomy of the autonomic nervous system. In Central Regulation of Autonomic Functions. Edited by Loewy AD, Spyer KM. New York: Oxford University Press; 1990:3–16.

    Google Scholar 

  3. Spyer KM: CNS organization of reflex circulatory control. In Central Regulation of Autonomic Functions. Edited by Loewy AD, Spyer KM. New York: Oxford University Press; 1990:168–188.

    Google Scholar 

  4. Julius S, Pascual A, London R: Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation 1971,44:413–418.

    Article  PubMed  CAS  Google Scholar 

  5. Struyker Boudier HAJ: Adrenergic mechanisms and pharmacotherapy of hypertension. In Adrenergic Blood Pressure Regulation: Proceedings of a Symposium. Edited by Birkenhäger WH, Folkow B, Struyker Boudier HAJ. Amsterdam, The Netherlands: Excerpta Medica; 1985:114–123.

    Google Scholar 

  6. Krief S, Lonnqvist F, Raimbaults, et al: Tissue distribution of the β-3 receptor m-RNA in man. J Clin Invest 1993, 91:344–349.

    Article  PubMed  CAS  Google Scholar 

  7. Linden ME, Gilman AG: G proteins. Sci Am 1992,267:56–91.

    Article  Google Scholar 

  8. Mancia G, Grasso G, Bertinieri G, et al: Effects of blood pressure measurement by the doctor on the patient’s blood pressure and heart rate. Lancet 1983,2:695–698.

    Article  PubMed  CAS  Google Scholar 

  9. Weder AB, Julius S: Behavior, blood pressure variability and hypertension. Psychosomatics 1985,47:406–414.

    CAS  Google Scholar 

  10. Osterziel KJ, Julius S, Brant D: Blood pressure elevation during hindquarter compression in dogs is neurogenic.J Hypertens 1984, 4:411–417.

    Google Scholar 

  11. Julius S, Sanches R, Malayen S, et al: Sustained blood pressure elevation to lower body compression in pigs and dogs. Hypertension 1982,4:782–788.

    Article  PubMed  CAS  Google Scholar 

  12. Millar-Craig MW, Bishop CN, Raftery EB: Circadian variation of blood-pressure. Lancet 1978, 1(8068):795–797.

    Article  PubMed  CAS  Google Scholar 

  13. Bristow JD, Honour AJ, Pickering GW, et al: Diminished baroreceptor sensitivity in high blood pressure. Circulation 1969, 39:48–54.

    Article  PubMed  CAS  Google Scholar 

  14. Korner PI, West MJ, Shaw J, et al: “Steady state” properties of the baroreceptor-heart rate reflex in essential hypertension in man. Clin Exp Pharmacol Physiol 1974,1:65–76.

    Article  PubMed  CAS  Google Scholar 

  15. Mancia G, Ludbrook J, Ferrari A, et al: Baroreceptor reflexes in human hypertension. Circ Res 1978,43:170–177.

    Article  PubMed  CAS  Google Scholar 

  16. Philipp T, Distler A, Cordes U: Sympathetic nervous system and blood pressure control in essential hypertension. Lancet 1978,2(8097):959–963.

    Article  PubMed  CAS  Google Scholar 

  17. Egan BM, Panis R, Hinderliter A, et al: Mechanism of increased α-adrenergic vasoconstriction in human hypertension. J Clin Invest 1987, 80:812–817.

    Article  PubMed  CAS  Google Scholar 

  18. Folkow B, Grumby G, Thulesius O: Adaptive structural changes of the vascular wall in hypertension and their relationship to control of the peripheral resistance. Acta Physiol Scand 1958, 44:255.

    Article  PubMed  CAS  Google Scholar 

  19. Korsgaard K, Aalkjaer C, Heagerty G, et al: Histology of subcutaneous small arteries from patients with essential hypertension. Hypertension 1993, 22:523–526.

    Article  PubMed  CAS  Google Scholar 

  20. Wikstrand J: Cardiovascular function during long term antihypertensive adrenergic blockade. In Adrenergic Blood Pressure Regulation: Proceedings of a Symposium. Edited by Birkenhäger WH, Folkow B, Struyker Boudier HAJ. Amsterdam, The Netherlands: Excerpta Medica; 1985:125–137.

    Google Scholar 

  21. Esler M, Jennings G, Lambert G: Noradrenaline release and the pathophysiology of primary human hypertension. Am J Hypertens 1989,2:140S-146S.

    PubMed  CAS  Google Scholar 

  22. Esler M, Lambert G, Jennings G: Regional norepinephrine turnover in human hypertension. Clin Exp Theory Pract 1989, A11(suppl l):75–89.

    Article  Google Scholar 

  23. Lambert GW, Ferrier C, Kaye D, et al: Central nervous system norephinephrine turnover in essential hypertension. Ann N Y Acad Sci 1995, 763:679–694.

    Article  PubMed  CAS  Google Scholar 

  24. Esler M, Julius S, Zweifler A, et al: Mild high renin essential hypertension: neurogenic human hypertension. N Engl J Med 1977, 296:405–411.

    Article  PubMed  CAS  Google Scholar 

  25. Anderson EA, Sinkey CA, Lawton WJ, Mark AL: Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from direct intra-neural recordings. Hypertension 1989, 14:177–183.

    Article  PubMed  CAS  Google Scholar 

  26. Guzzetti S, Piccaluga E, Casati R, et al: Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens 1988, 6:711–717.

    Article  PubMed  CAS  Google Scholar 

  27. Julius S, Jamerson K: Sympathetics, insulin resistance and coronary risk in hypertension: the chicken-and-egg question. J Hypertens 1994,12:495–502.

    Article  PubMed  CAS  Google Scholar 

  28. Levy RL, White PD, Stroud WD, et al: Transient tachycardia: prognostic significance alone and in association with transient hypertension. JAMA 1945,129:585–588.

    Article  Google Scholar 

  29. Julius S, Krause L, Schork N, et al: Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens 1991, 9:77–84.

    PubMed  CAS  Google Scholar 

  30. Carlyle M, Jones OB, Kuo JJ, Hall JE: Chronic cardiovascular and renal actions of leptin: role of adrenergic activity. Hypertension 2002, 39 (2 Pt 2):496–501.

    Article  PubMed  CAS  Google Scholar 

  31. Esler M: The sympathetic nervous system and hypertension. Am J Hypertens 2000,13 (6 Pt 2)99S-105S.

    Article  PubMed  CAS  Google Scholar 

  32. Palatini P, Vriz O, Nesbitt S, et al: Parental hyperdynamic circulation predicts insulin resistance in offspring: the Tecumseh Offspring Study. Hypertension 1999, 33:769–774.

    Article  PubMed  CAS  Google Scholar 

  33. Julius S: Neurogenic component in borderline hypertension. In The Nervous System in Arterial Hypertension. Edited by Julius S, Esler MD. Springfield, IL: Charles C. Thomas; 1976:301–330.

    Google Scholar 

  34. Julius S, Schork N, Johnson E, et al independence of pressure reactivity from blood pressure levels in Tecumseh, Michigan. Hypertension 1991,17:13–19.

    Article  Google Scholar 

  35. Julius S, Pascual A, Sannerstedt R, et al: Relationship between cardiac output and peripheral resistance in borderline hypertension. Circulation 1971, 43:382–390.

    Article  PubMed  CAS  Google Scholar 

  36. Sannerstedt R, Julius S: Systemic haemodynamics in borderline arterial hypertension: responses to static exercise before and under the influence of propranolol. Cardiovasc Res 1972, 6:398–403.

    Article  PubMed  CAS  Google Scholar 

  37. Hollenberg NK, Williams GH, Adams DF: Essential hypertension: abnormal renal vascular and endocrine responses to a mild psychological stimulus. Hypertension 1981,3:11–17.

    Article  PubMed  CAS  Google Scholar 

  38. Noll G, Wenzel R, Schneider M, et al: Increased activation of sympathetic nervous system and endothelin by mental stress in normotensive offspring of hypertensive parents. Circulation 1996, 93:866–869.

    Article  PubMed  CAS  Google Scholar 

  39. Böhm R, van Baak M, van Hooff M, et al: Salivary flow in borderline hypertension. Klin Wochenschr 1985, 63:154–156.

    PubMed  Google Scholar 

  40. Harburg E, Julius S, McGinn NF, et al: Personality traits and behavioral patterns associated with systolic blood pressure levels in college males. J Chronic Dis 1964,17:405–414.

    Article  PubMed  CAS  Google Scholar 

  41. Esler M, Julius S, Zweifler A, et al: Mild high-renin essential hypertension: neurogenic human hypertension? N Engl J Med 1977, 296:405–411.

    Article  PubMed  CAS  Google Scholar 

  42. Lund-Johansen P: Hemodynamic patterns of untreated hypertensive disease. In Hypertension: Pathophysiology, Diagnosis, and Management. Edited by Laragh JH, Brenner BM. New York: Raven Press; 1990:305–327.

    Google Scholar 

  43. Lund-Johansen P: Central haemodynamics in essential hypertension at rest and during exercise: a 20-year follow-up study.. J Hypertens 1989, 7(suppl 6):52–55.

    Google Scholar 

  44. Julius S, Randall OS, Esler MD, et al: Altered cardiac responsiveness and regulation in the normal cardiac output type ofborderline hypertension. Circ Res 1975,36–37(suppl I):199–207.

    Article  Google Scholar 

  45. Julius S, Sanchez R, Brant D: Pressure increase to external hindquarter compression in dogs: a facultative regulatory response. J Hypertens 1986,4(suppl 6):54–56.

    Google Scholar 

  46. Julius S: Editorial review: the blood pressure seeking properties of the central nervous system. J Hypertens 1988, 6:177–185.

    Article  PubMed  CAS  Google Scholar 

  47. Julius S, Jamerson K, Mejia A, et al: The association of borderline hypertension with target organ changes and higher coronary risk. Tecumseh Blood Pressure study. JAMA 1990,264:354–358.

    Article  PubMed  CAS  Google Scholar 

  48. Palatini P, Julius S: Heart rate and the cardiovascular risk. J Hypertens 1997,15:3–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amerena, J., Julius, S. (2003). Role of the Nervous System in Human Hypertension. In: Hollenberg, N.K. (eds) Atlas of Hypertension. Current Medicine Group, London. https://doi.org/10.1007/978-1-4615-6493-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6493-5_2

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4615-6495-9

  • Online ISBN: 978-1-4615-6493-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation