Fura-2 fluorescent technique for the assessment of Ca2+ homeostasis in cardiomyocytes

  • Chapter
Novel Methods in Molecular and Cellular Biochemistry of Muscle

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 20))

  • 145 Accesses

Abstract

Ca2+ homeostasis plays a pivotal role in maintaining cell growth and function. Many heart diseases are related to the abnormalities in Ca2+ mobilization and extrusion. Ca2+-sensitive fluorescent dyes have been used successfully to estimate intracellular free Ca2+ ([Ca2+]i) level and the mechanisms of Ca2+ movements in living cells. This article is focused on the methodology involving the use of Fura-2/AM or free Fura-2 to measure agonist-induced Ca2+ mobilization as well as the mechanisms of changes in [Ca2+]. in cardiomyocytes. Methods involving Fura-2 technique for the measurement of Ca2+ extrusion from the cells and Ca2+ reuptake by sarcoplasmic reticulum (SR) are also described. The prevention of KCl-induced increase in the intracellular Ca2+ is shown by chelating the extracellular Ca2+ with EGTA or by the presence of Ca2+-channel inhibitors such as verapamil and diltiazem. The involvement of SR in the ATP-induced increase in intracellular Ca2+ is illustrated by the use of Ca2+-pump inhibitors, thapsigargin and cyclopiazonic acid as well as ryanodine which deplete the SR Ca2+ storage. The use of 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate (NCDC), an inhibitor of inositol 1,4,5-trisphosphate (IP3) production, is described for the attenuation of phosphatidic acid (PA) induced increase in Ca2+-mobilization. The increase in intracellular Ca2+ in cardiomyocytes by PA, unlike that by KC1 or ATP, was observed in diabetic myocardium. Thus, it appears that the Fura-2 method for the measurement of Ca2+ homeostasis in cardiomyocytes is useful in studying the pathophysiology and pharmacology of Ca2+ movements. (Mol Cell Biochem 172: 149–157, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ringer S: A further contribution regarding the influence of the different constitutes of the blood on the contraction of the heart. J Physiol (London)4: 29–42, 1883

    PubMed  CAS  Google Scholar 

  2. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE: Calcium movements in relation to heart function. Basic Res Cardiol 77: 117–139, 1982

    Article  PubMed  CAS  Google Scholar 

  3. Ikonomidis JS, Salerno TA, Facs F, Wittnich C: Calcium and the heart: An essential partnership. Can J Cardiol 6: 305–316, 1990

    PubMed  CAS  Google Scholar 

  4. Grynkiewicz G, Poenie M, Tsien RY: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450, 1985

    PubMed  CAS  Google Scholar 

  5. Piper HM, Jacobson SL, Schwartz P: Determinants of cardiomyocyte development in long term primary culture. J Mol Cell Cardiol 20: 825–835, 1988

    Article  PubMed  CAS  Google Scholar 

  6. Xu Y-J, Gopalakrishnan V: Vasopressin increases cytosolic free [Ca2+] in neonatal rat cardiomyocyte: Evidence for VI subtype receptors. Circ Res 69: 239–245, 1991

    Article  PubMed  CAS  Google Scholar 

  7. Stehno-Bittel L, Sturek M: Spontaneous sarcoplasmic reticulum calcium release and extrusion from bovine, not porcine, coronary artery smooth muscle. J Physiol Lond 451: 49–78, 1992

    PubMed  CAS  Google Scholar 

  8. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS: Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244: E528–E535, 1983

    PubMed  CAS  Google Scholar 

  9. Lowry OH, Rosebrough NJ, Fair AI, Randall RJ: Protein measurement with a folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  10. Kargacin ME, Scheid CR, Honeyman TW: Continuous monitoring of Ca2+ uptake in membrane vesicles with fura-2. Am J Physiol 255: C694–C698, 1988

    PubMed  CAS  Google Scholar 

  11. Xu Y-J, Sandirasegarane L, Gopalakrishnan V: Protein kinase C inhibitors enhance endothelin-1 and attenuate vasopressin and angiotensin II evoked elevation in rat cardiomyocytes. Brit J Pharmacol 108: 6–8, 1993

    Article  CAS  Google Scholar 

  12. Christie A, Sharma VK, Sheu SS: Mechanism of extracellular ATP-induced increase of cytosolic Ca2+ concentration in isolated rat ventricular myocytes. J Physiol Lond 445: 369–388, 1992

    PubMed  CAS  Google Scholar 

  13. Damron DS, Bond M: Modulation of Ca2+ cycling in cardiac myocytes by arachidonic acid. Circ Res 72: 376–386, 1993

    Article  PubMed  CAS  Google Scholar 

  14. Xu Y-J, Panagia V, Shao Q, Wang X, Dhalla NS: Phosphatidic acid increases intracellular free Ca2+ and cardiac contractile force. Am J Physiol 271: H651–H659, 1996

    PubMed  CAS  Google Scholar 

  15. Shah KR, Matsubara T, Foerster DR, Xu Y-J, Dhalla NS: Mechanisms of inotropic responses of the isolated rats to vanadate. Int J Cardiol 52: 101–113, 1995

    Article  PubMed  CAS  Google Scholar 

  16. Xu Y-J, Botsford M, Dhalla, NS: Responses to phosphatidic acid and rate of pacing in diabetic heart. J Mol Cell Cardiol 27: A122, 1995

    Google Scholar 

  17. Pierce GN, Beamish RE, Dhalla NS: Dysfunction of the cardiovascular system during diabetes. In: GN Pierce, RE Beamish, NS Dhalla (eds). Heart Dysfunction in Diabetes. CRC Press, Boca Raton, FL, 1988, pp 51–67

    Google Scholar 

  18. Earm YE, Ho W-K, So I: Effects of adriamycin on ionic currents in single cardiac myocytes of the rabbit. J Mol Cell Cardiol 26: 163–172, 1994

    Article  PubMed  CAS  Google Scholar 

  19. Li L, Breemen CV: Na+-Ca2+ exchange in intact endothelium of rabbit cardiac valve. Circ Res 76: 396–404, 1995

    Article  PubMed  CAS  Google Scholar 

  20. Chin TK, Spitzer KW, Philipson KD, Bridge JH: The effect of exchanger inhibitory peptide (XIP) on sodium-calcium exchange current in guinea pig ventricular cells. Circ Res 72: 497–503, 1993

    Article  PubMed  CAS  Google Scholar 

  21. Nosek TM, Williams MF, Zeigler ST, Godt RE: Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 250: C807–C811, 1986

    PubMed  CAS  Google Scholar 

  22. Verkhratskii AN, Pronchuk NF, Tepikin AV: Effect of reduced extracellular level of sodium ions on the intracellular level of calcium ions in the cytoplasm of cultured rat cardiomyocytes. Fiziol-Zh 35: 45–49, 1989

    PubMed  CAS  Google Scholar 

  23. Dubyak GG, El-Moatassim C: Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265: C577–C606, 1993

    PubMed  CAS  Google Scholar 

  24. Martinez-Zaguilan R, Wegner JA, Gillies RJ, Hoyer PB: Differential regulation of Ca2+ homeostasis in ovine large and small luteal cells. Endocrinology 135: 2099–2108, 1994

    Article  PubMed  CAS  Google Scholar 

  25. Chen Q, Breemen CV: The superficial buffer in venous smooth muscle: Sarcoplasmic reticulum refilling and unloading. Br J Pharmacol 109: 336–343, 1993

    Article  PubMed  CAS  Google Scholar 

  26. Vigne P, Breittmayer JP, Marsault R, Frelin C: Endothelin mobilizes Ca2+ from a caffeine-and ryanodine-insensitive intracellular pool in rat atrial cells. J Biol Chem 265: 6782–6787, 1990

    PubMed  CAS  Google Scholar 

  27. Takei M, Ueno M, Endo K, Nakagawa H: Effect of NCDC, a protease inhibitor, on histamine release from rat peritoneal mast cells induced by Anti-IgE. Biochem Biophys Res Commun 181: 1313–1322, 1991

    Article  PubMed  CAS  Google Scholar 

  28. Kurz T, Wolf RA, Corr PB: Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes. Circ Res 72: 701–706, 1993

    Article  PubMed  CAS  Google Scholar 

  29. Berridge MJ: Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360, 1984

    PubMed  CAS  Google Scholar 

  30. Movsesian MA, Thomas AP, Selak M, Williamson JR: Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. FEBS Lett 185: 328–332, 1985

    Article  PubMed  CAS  Google Scholar 

  31. Vites AM, Pappano A: Inositol 1,4,5-trisphosphate releases intracellular Ca2+ in permeabilized chick atria. Am J Physiol 258: H1745–H1752, 1990

    PubMed  CAS  Google Scholar 

  32. Fabiato A: Inositol (1,4,5)-trisphosphate-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells (Abstract). Biophys J 49: 190, 1986

    Google Scholar 

  33. Kawaguchi H, Sano H, Ilizuka K, Okada H, Kudo T, Kageyama S, Muramoto S, Murakami T, Okamoto H, Mochizuki N, Kitabatake A: Phosphatidylinositol metabolism in hypertrophic rat heart. Circ Res 72: 966–972, 1993

    Article  PubMed  CAS  Google Scholar 

  34. Viamonte VM, Steinberg SF, Chow YK, Legato MJ, Robinson RB, Rosen MR: Phospholipase C modulates automaticity of canine cardiac Purkinje fibers. J Pharmacol Exp Ther 252: 886–893, 1990

    PubMed  CAS  Google Scholar 

  35. Nakaki T, Rosh BL, Chung D-M, Costa E: Phasic and tonic components in 5-HT receptor-mediated rat aorta contraction: Participation of Ca2+ channels and phospholipase C. J Pharmacol Exp Ther 234: 442–446, 1985

    PubMed  CAS  Google Scholar 

  36. Carafoli E: How calcium crosses plasma membranes including the sarcolemma. In: LH Opie (ed). Calcium Antagonist and Cardiovascular Disease. Raven Press, New York, 1984, pp 29–41

    Google Scholar 

  37. Limas CJ: Phosphatidate releases calcium from cardiac sarcoplasmic reticulum. Biochem Biophys Res Commun 95: 541–546, 1980

    Article  PubMed  CAS  Google Scholar 

  38. Gopalakrishnan V, Xu Y-J, Sulakhe PV, Triggle CR, McNeill JR: Vasopressin (VI) receptor characteristics in rat aortic smooth muscle cells. Am J Physiol 261: H1927–H1936, 1991

    PubMed  CAS  Google Scholar 

  39. Liu K, Massaeli H, Pierce GN: The action of oxidized low density lipoprotein on calcium transients in isolated rabbit cardiomyocytes. J Biol Chem 268: 4145–4151, 1993

    PubMed  CAS  Google Scholar 

  40. Lipp P, Niggli E: Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Insight from subcellular release patterns revealed by confocal microscopy. Circ Res 74: 949–990, 1994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, YJ., Shao, Q., Dhalla, N.S. (1997). Fura-2 fluorescent technique for the assessment of Ca2+ homeostasis in cardiomyocytes. In: Pierce, G.N., Claycomb, W.C. (eds) Novel Methods in Molecular and Cellular Biochemistry of Muscle. Developments in Molecular and Cellular Biochemistry, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6353-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6353-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7918-8

  • Online ISBN: 978-1-4615-6353-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation