Multi-Energy Radioscopy — An X-Ray Technique for Materials Characterization

  • Chapter
Nondestructive Characterization of Materials VIII

Abstract

The interaction of X-rays with matter was already analyzed to a high extent by 1926, as the patents by Simon1, 2 and Danin3 demonstrated possibilities for the production of color X-ray images utilizing energy, atomic number and density dependence. Medical diagnostics applied and developed these ideas first.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  1. F. Simon. Verfahren zur fotografischen Aufnahme von Röntgenstrahlen unter Umsetzung der Härteunterschiede in sichtbare Töne und Aufnahmematerial, DRP 442 807 (1926).

    Google Scholar 

  2. F. Simon. Improvements relating to X-ray Photography, Great. Brit. Pat. 276 678 (1927).

    Google Scholar 

  3. L. Danin. Röntgenbild und Verfahren zu seiner Herstellung, DRP 437 507 (1926).

    Google Scholar 

  4. N. N. Beyer. New Techniques in Radiography, Proceedings of the Third Annual Symposium on Nondestructive Testing of Aircraft of the Missile Components, San Antonio, Texas (USA) 1962.

    Google Scholar 

  5. D. Linke. Beitrag zur Anwendungsmöglichkeit der Color-Radiografie in der industriellen Werkstoffprüfung, Belegarbeit der TH Magdeburg, Institut für Werkstoffkunde und Werkstoffprüfung.

    Google Scholar 

  6. Richter und D. Linke, 18., 19. Mitteilung der Forschungsgruppe für Zerstörungsfreie Werkstoffprüfung im VEB Schwermaschinenbau „Karl Liebknecht“ Magdeburg, die Technik, 7, 8 and 9 (1966).

    Google Scholar 

  7. Engler, Friedman, Armstrong, Determination of material composition using dual energy computed tomography on a medical scanner, Proc. of Indust. Computed Tomo. Topical, ASNT (1989).

    Google Scholar 

  8. R. Leukel. Mikro-Computer-Tomographie mit Dual-Energy-Rekonstruktion, Dissertation, Saarbrücken (1994).

    Google Scholar 

  9. J.H. Kinney, M.C. Nichols, X-Ray tomographic microscopy (XTM) using synchrotron radiation, Review of Materials Science 22 (1992)

    Google Scholar 

  10. G.L. Clark. The Encyclopedia of X-Rays and Gamma-Rays, Reinhold Publishing Corporation, New York; Chapmann & Hall Ltd., London (1963).

    Google Scholar 

  11. http: //physics.nist.gov/PhysRefData/XrayMassCoef/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meyendorf, N. et al. (1998). Multi-Energy Radioscopy — An X-Ray Technique for Materials Characterization. In: Green, R.E. (eds) Nondestructive Characterization of Materials VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4847-8_71

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4847-8_71

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7198-4

  • Online ISBN: 978-1-4615-4847-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation