Gastrointestinal Detoxification and Digestive Disorders in Ruminant Animals

  • Chapter
Gastrointestinal Microbiology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Nutrition and toxicology are closely intertwined. Toxic substances can interfere with vital functions of the gastrointestinal tract such as digestion, absorption, excretion, and their regulatory control. From a toxicology viewpoint animals are continually challenged by compounds that are without nutritive value — material that they nevertheless ingest, inhale, or absorb. Such exposure to toxic compounds has been going on as long as life has and is not merely a consequence of the modern era of industrialization. In fact, toxin production may be considered a successful evolutionary strategy or adaptation to predators or a form of chemical warfare practiced by species as varied as insects, frogs, and plants (Rosenthal and Janzen 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler JH, Weitzkin-Neiman G (1970) Demethylation of methyl-O-coumestrols by rumen microorganisms in vitro. Refu Vet 27: 51–55.

    Google Scholar 

  • Akin DE, Benner R (1988) Degradation of polysaccharides and lignin by ruminai bacteria and fungi. Appl Environ Microbiol 54: 1117–1125.

    PubMed  CAS  Google Scholar 

  • Allison MJ, Reddy CA (1984) Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. In: Klug MJ, Reddy CA, eds. Current Perspectives on Microbial Ecology, pp. 248–256. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Allison MJ, Robinson IM (1967) Tryptophan biosynthesis from indole-3-acetic acid by anaerobic bacteria from the rumen. Biochem J 102: 36–37P.

    Google Scholar 

  • Allison MJ, Bucklin JA, Dougherty RW (1964) Ruminai changes after overfeeding with wheat and the effect of intraruminal inoculation on adaptation to a ration containing wheat. J Anim Sci 23: 1164–1171.

    Google Scholar 

  • Allison MJ, Robinson IM, Dougherty RW, Bucklin JA (1975) Grain overload in cattle and sheep: changes in microbial populations in the cecum and rumen. Am J Vet Res 36: 181–185.

    PubMed  CAS  Google Scholar 

  • Allison MJ, Cook HM, Dawson KA (1981) Selection of oxalate-degrading rumen bacteria in continuous cultures. J Anim Sci 53: 810–816.

    CAS  Google Scholar 

  • Allison MJ, Mayberry WR, McSweeney CS, Stahl DA (1992) Synergistes jonesii, gen. nov., sp. nov.: A rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 15: 522–529.

    Article  CAS  Google Scholar 

  • Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Anantharam V, Allison MJ, Maloney PC (1989) Oxalate: formate exchange: the basis for energy coupling in Oxalobacter. J Biol Chem 264: 7244–7250.

    PubMed  CAS  Google Scholar 

  • Anderson RC, Rasmussen MA, Allison MJ (1993) Metabolism of the plant toxins nitropropionic acid and nitropropanol by ruminai microorganisms. Appl Environ Microbiol 59: 3056–3061.

    PubMed  CAS  Google Scholar 

  • Angermaier L, Simon H (1983) On the reduction of aliphatic and aromatic nitro compounds by Clostridia, the role of ferredoxin and its stabilization. Hoppe-Seyler’s Z. Physiol Chem 364: 961–975.

    Article  CAS  Google Scholar 

  • Baetz AL, Allison MJ (1989) Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J Bacteriol 171: 2605–2608.

    PubMed  CAS  Google Scholar 

  • Baetz AL, Allison MJ (1990) Purification and characterization of formyl-coenzyme A transferase from Oxalobacter formigenes. J Bacteriol 172: 3537–3540.

    PubMed  CAS  Google Scholar 

  • Baetz AL, Allison MJ (1992) Localization of oxalyl-coenzyme A decarboxylase, and formyl-coenzyme A transferase in Oxalobacter formigenes cells. Syst Appl Microbiol 15: 167–171.

    Article  CAS  Google Scholar 

  • Bailey RW, Oxford AE (1958) A quantitative study of the production of dextran from sucrose by rumen strains of Streptococcus bovis. J Gen Microbiol 19: 130–145.

    Article  PubMed  CAS  Google Scholar 

  • Bartley EE, Meyer RM, Fina LR (1975) Feedlot or grain bloat. In: McDonald IW, Warner ACI, eds. Digestion and Metabolism in the Ruminant, pp. 551–562. Australia: University of New England Publishing Unit.

    Google Scholar 

  • Batterham TJ, Hart, NK, Lamberton JA, Braden AWH (1965) Metabolism of oestrogenic isoflavones in sheep. Nature (Lond) 206: 509.

    Article  CAS  Google Scholar 

  • Beacham IR (1987) Silent genes in prokaryotes. FEMS Microbiol Rev 46: 409–417.

    Article  CAS  Google Scholar 

  • Beauchamp RO, Bus JS, Popp JA, Borreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. CRC Crit Rev Toxicol 13: 25–97.

    Article  CAS  Google Scholar 

  • Bell EA (1973) Aminonitriles and amino acids not derived from proteins. In: Toxicants Occurring Naturally in Foods, pp. 153–169. Washington, DC: National Research Council, National Academy of Sciences.

    Google Scholar 

  • Berenbaum M, Feeny P (1981) Toxicity of angular furanocoumarins to swallow tail butterflies: escalation in a coevolutionary arms race. Science 212: 927–929.

    Article  PubMed  CAS  Google Scholar 

  • Blake JT, Thomas DW (1971) Acute bovine pulmonary emphysema in Utah. J Am Vet Med Assoc 158: 2047–2052.

    PubMed  CAS  Google Scholar 

  • Borneman WS, Hartley RD, Morrison WH, Akin DE, Ljungdahl, LG (1990) Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microbiol Biotechnol 33: 345–351.

    Article  CAS  Google Scholar 

  • Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1991) Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 57: 2337–2344.

    PubMed  CAS  Google Scholar 

  • Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1992) Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 58: 3762–3766.

    PubMed  CAS  Google Scholar 

  • Boyd JW, Walton JR (1977) Cerebrocortical necrosis in ruminants: an attempt to identify the source of thiaminase in affected animals. J Comp Pathol 87: 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Braden AWH, Hart NK, Lamberton JA (1967) The oestrogenic activity and metabolism of certain isoflavones in sheep. Aust J Agric Res 18: 335–348.

    Article  CAS  Google Scholar 

  • Brent BE (1976) Relationship of acidosis to other feedlot ailments. J Anim Sci 43: 930–935.

    PubMed  CAS  Google Scholar 

  • Brent BE, Bartley EE (1984) Thiamin and niacin in the rumen. J Anim Sci 59: 813–822.

    PubMed  CAS  Google Scholar 

  • Breeze RG, Pirie HM, Selman IE, Wiseman A (1976) Fog fever (acute pulmonary emphysema) in cattle in Britain. Vet Bull 46: 243–251.

    Google Scholar 

  • Breves G, Hoeller H, Harmeyer J, Martens H (1980) Thiamine balance in the gastrointestinal tract of sheep. J Anim Sci 51: 1177–1181.

    PubMed  CAS  Google Scholar 

  • Bryant MP, Robinson IM, Lindahl IL (1961) A note on the flora and fauna in the rumen of steers fed a feedlot bloat-provoking ration and the effect of penicillin. Appl Microbiol 9: 511–515.

    PubMed  CAS  Google Scholar 

  • Butler GW, Petersen PJ (1961) Aspects of the faecal excretion of selenium by sheep. NZ J Agric Res 4: 484–491.

    Article  CAS  Google Scholar 

  • Buzaissy C, Tribe DE (1960) The synthesis of vitamins in the rumen of sheep. 1. The effect of diet on the synthesis of thiamin, riboflavin and nicotinic acid. Aust J Agric Res 11: 989–1001.

    Article  Google Scholar 

  • Caldwell DR, Bryant MP (1966) Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol 14: 794–801.

    PubMed  CAS  Google Scholar 

  • Candau M, Massengo J (1982) Evidence of a thiamine deficiency in sheep fed maize silage. Ann Rech Vet 13: 329–340.

    PubMed  CAS  Google Scholar 

  • Carlson JR, Dickinson EO (1978) Tryptophan-induced pulmonary edema and emphysema in ruminants. In: Keeler RF, Van Kampen KR, eds. Effect of Poisonous Plants on Livestock, pp. 251–259. New York: Academic Press.

    Google Scholar 

  • Carlson JR, Breeze RG (1984) Ruminai metabolism of plant toxins with emphasis on indolic compounds. J Anim Sci 58: 1040.

    PubMed  CAS  Google Scholar 

  • Cheeke PR, Shull LR (1985) Other plant toxins and poisonous plants-Fluoroacetate (1080). In: Natural Toxicants in Feeds and Poisonous Plants, pp. 375–377. Westport, Conn: AVI.

    Google Scholar 

  • Cheeke PR (1988) Toxicity and metabolism of pyrrolizidine alkaloids. J Anim Sci 66: 343–2350.

    Google Scholar 

  • Cheeke PR (1994) A review of the functional and evolutionary roles of the liver in the detoxification of poisonous plants, with special reference to pyrrolizidine alkaloids. Vet Hum Toxicol 36: 240–247.

    PubMed  CAS  Google Scholar 

  • Cheng KJ, Jones GA, Simpson FJ, Bryant MP (1969) Isolation and identification of rumen bacteria capable of anaerobic rutin degradation. Can J Bacteriol 15: 1365–1371.

    CAS  Google Scholar 

  • Cheng KJ, Hironaka R, Jones GA, Nicas T, Costerton JW (1976) Frothy feedlot bloat in cattle: production of extracellular polysaccharides and development of viscosity in cultures of Streptococcus bovis. Can J Microbiol 22: 450–459.

    Article  PubMed  CAS  Google Scholar 

  • Cheng KJ, Dinsdale D, Stewart CS (1979) Maceration of clover and grass leaves by Lachnospira multiparus. Appl Environ Microbiol 38: 723–729.

    PubMed  CAS  Google Scholar 

  • Cheng KJ, Fay JP, Howarth RE, Costerton JW (1980) Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl Environ Microbiol 40: 613–625.

    PubMed  CAS  Google Scholar 

  • Church DC (1979) Rumen fermentation of natural feedstuffs. In: Digestive Physiology and Nutrition of Ruminants, Vol. 1, p. 295. Portland: Oxford Press.

    Google Scholar 

  • Clark PH (1984) The evolution of degradative pathways. In: Gibson DT, ed. Microbiological Degradation of Organic Compounds, pp. 11–27. New York: Marcel Dekker.

    Google Scholar 

  • Counotte GHM, Prins RA, Jansen RHAM, de Bie MJA (1981) Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Appl Environ Microbiol 42: 649–655.

    PubMed  CAS  Google Scholar 

  • Counotte GHM, Lankhorst A, Prins RA (1983) Role of DL-Lactic acid as an intermediate in rumen metabolism of dairy cows. J Anim Sci 56: 1222–1235.

    PubMed  CAS  Google Scholar 

  • Cousins FB, Cairney IM (1961) Some aspects of selenium metabolism in sheep. Aust J Agric Res 12: 927–942.

    Article  CAS  Google Scholar 

  • Cox RI, Braden AWH (1974) A new phyto-oestrogen metabolite in sheep. J Reprod Fertil 36: 490–493.

    Article  Google Scholar 

  • Craig MA, Latham CJ, Blythe LL, Schmotzer WB, O’Connor OA (1992) Metabolism of toxic pyrrolizidine alkaloids from tansy ragwort (Senecio jacobaea) in ovine rumen fluid under anaerobic conditions. Appl Environ Microbiol 58: 2730–2736.

    PubMed  CAS  Google Scholar 

  • Cremin JD Jr, McLeod KR, Harmon DL, Goetsch AL, Bourquin LD, Fahey GC Jr (1995) Portal and hepatic fluxes in sheep and concentrations in cattle ruminai fluid of 3-(4-hydroxyphenyl) propionic, benzoic, 3-phenylpropionic, and trans-cinnamic acids. J Anim Sci. 73: 1766–1775. Submitted.

    PubMed  CAS  Google Scholar 

  • Culvenor CCJ, Edgar JA, Jago MV, Outleridge A, Peterson JE, Smith LW (1976) Hepatoand pneumotoxicity of pyrrolizidine alkaloids and derivatives in relation to molecular structure. Chem-Biol Interact 12: 299–324.

    Article  PubMed  CAS  Google Scholar 

  • Daniel SL, Drake HL (1993) Oxalate and glyoxalate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl Environ Microbiol 59: 3062–3069.

    PubMed  CAS  Google Scholar 

  • Davies HL (1987) Limitations to livestock production associated with phytoestrogens and bloat. In: Wheeler JL, Pearson CJ, Robards GE, eds. Temperate pastures: their production, use and management, pp. 446–456. Sydney, Australia: Australian Wool Corporation/CSIRO.

    Google Scholar 

  • Dawson KA, Allison MJ (1988) Digestive disorders and nutritional toxicity. In: Hobson PN, ed. The Rumen Microbial Ecosystem, pp. 445–459. London: Elsevier.

    Google Scholar 

  • Dawson KA, Allison MJ, Hartman PA (1980a) Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol 40: 833–839.

    PubMed  CAS  Google Scholar 

  • Dawson KA, Allison MJ, Hartman PA (1980b) Characteristics of anaerobic oxalate-degrading enrichment cultures from the rumen. Appl Environ Microbiol 40: 840–846.

    PubMed  CAS  Google Scholar 

  • Demoss RD, Moser K (1969) Tryptophanase in diverse bacterial species. J Bacteriol 98: 167–171.

    PubMed  CAS  Google Scholar 

  • De Vries W, van Wijck-Kapteyn WMC, Oosterhuis SKH (1974) The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens. J Gen Microbiol 81: 69–78.

    Article  PubMed  Google Scholar 

  • Doig AJ, Williams DH, Oelrichs PB, Baczynskyj L (1990) Isolation and structure elucidation of punicalagin, a toxic hydrolysable tannin, from Terminalia oblongata. J Chem Soc Perkin Trans 1: 2317–2321

    Article  Google Scholar 

  • Dominguez-Bello MG, Stewart CS (1990) Degradation of mimosine, 2, 3-dihydroxy pyridine and 3-hydroxy-4(1H)-pyridone by bacteria from the rumen of sheep in Venezuela. FEMS Microbiol Ecol 73: 283–289.

    Article  CAS  Google Scholar 

  • Eadie JM, Mann SO (1970) Development of the rumen microbial population: high starch diets and instability. In: Phillipson AT, ed. Physiology of Digestion and Metabolism in the Ruminant, pp. 335–347. Newcastle-Upon-Tyne: Oriel Press.

    Google Scholar 

  • Edwin EE, Jackman R (1973) Ruminai thiaminase and tissue thiamine in cerebrocortical necrosis. Vet Rec 92: 640–641.

    Article  PubMed  CAS  Google Scholar 

  • Edwin EE, Jackman R (1982) Ruminant thiamine requirement in perspective. Vet Res Commun 5: 237–250.

    Article  PubMed  CAS  Google Scholar 

  • Edwin EE, Lewis G, Allcroft R (1968a) Cerebrocortical necrosis: a hypothesis for the possible role of thiaminases in its pathogenesis. Vet Rec 83: 176–178.

    Article  Google Scholar 

  • Edwin EE, Spence JB, Woods AJ (1968b) Thiaminases and cerebrocortical necrosis. Vet Rec 83: 417.

    Article  PubMed  CAS  Google Scholar 

  • Edwin EE, Markson LM, Shreeve J, Jackman R, Carroll PJ (1979) Diagnostic aspects of cerebrocortical necrosis. Vet Rec 104: 4–8.

    Article  PubMed  CAS  Google Scholar 

  • Fowler ME (1983) Plant poisoning in free-living wild animals — a review. J Wildl Dis 19: 34–43.

    PubMed  CAS  Google Scholar 

  • Goldman P (1965) The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. J Biol Chem 240: 3434.

    PubMed  CAS  Google Scholar 

  • Goldman P (1969) The carbon-fluorine bond in compounds of biological interest. Science 164: 1123.

    Article  PubMed  CAS  Google Scholar 

  • Goldman P, Milne GWA, Kiester DB (1968) Carbon-halogen bond cleavage. HI. Studies on bacterial halidohydrolases. J Biol Chem 243: 428.

    PubMed  CAS  Google Scholar 

  • Gooneratne SV, Olkowski RG, Klemmer GA, Kessler GA, Christensen DA (1989) High sulfur related thiamine deficiency in cattle: a field study. Can Vet J 30: 139–146.

    PubMed  CAS  Google Scholar 

  • Gregg K, Sharpe H (1991) Enhancement of rumen microbial detoxification by gene transfer. In: Tsuda T, Sasaki Y, Kawashima R, eds. Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 719–735. New York: Academic Press.

    Chapter  Google Scholar 

  • Gregg K, Cooper CL, Schafer DJ, et al. (1994) Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium. Bio/Technol 12: 1361–1365.

    Article  CAS  Google Scholar 

  • Grigat GA, Mathison GW (1983) A survey of the thiamine status of growing and fattening cattle in Alberta feedlots. Can J Anim Sci 63: 715–719.

    Article  Google Scholar 

  • Gustine DL, Moyer BG, Wangsness PJ, Shenk JS (1977) Ruminai metabolism of 3-nitropropanoyl-D-glucopyranoses from crownvetch. J Anim Sci 44: 1107–1111.

    CAS  Google Scholar 

  • Gutierrez J, Davis RE, Lindahl IL, Warwick EJ (1959) Bacterial changes in the rumen during the onset of feed-lot bloat of cattle and characteristics of Peptostreptococcus elsdenii n. sp. Appl Microbiol 7: 16–22.

    PubMed  CAS  Google Scholar 

  • Hammond AC, Bradley BJ, Yokoyama MT, Carlson JR, Dickinson EO (1979) 3-Methylindole and naturally occurring acute bovine pulmonary edema and emphysema. Am J Vet Res 40: 1398–1401.

    PubMed  CAS  Google Scholar 

  • Hammond AC, Allison MJ, Williams MJ, Prine GM, Bates DB (1989) Prevention of Leucaena toxicosis of cattle in Florida by ruminai inoculation with 3-hydroxy-4-(1H)-pyridone-degrading bacteria. Am J Vet Res 50: 2176–2180.

    PubMed  CAS  Google Scholar 

  • Hegarty MP, Schinckel PG, Court RD (1964) Reaction of sheep to the consumption of Leucaena glauca benth. and to its toxic principle mimosine. Aust J Agric Res 15: 153–167.

    Article  CAS  Google Scholar 

  • Helm RF, Ralph J (1992) Lignin-hydroxycinnamyl compounds related to forage cell wall structure. 1. Ether-linked structures. J Agric Food Chem 40: 2167–2175.

    Article  CAS  Google Scholar 

  • Hidiroglou M, Heaney DP, Jenkins KJ (1968) Metabolism of inorganic selenium in rumen bacteria. Can J Physiol Pharmacol 46: 229–232.

    Article  PubMed  CAS  Google Scholar 

  • Hidiroglou M, Jenkins KJ, Knipfel JE (1974) Metabolism of selenomethionine in the rumen. Can J Anim Sci 54: 325–330.

    Article  CAS  Google Scholar 

  • Hino T, Kuroda S (1993) Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose and lactate. Appl Environ Microbiol 59: 255–259.

    PubMed  CAS  Google Scholar 

  • Hobson PN (1965) Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. J Gen Microbiol 38: 167–180.

    Article  PubMed  CAS  Google Scholar 

  • Hobson PN, Summers R (1967) The continuous culture of anaerobic bacteria. J Gen Microbiol 47: 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson RE, Knott JC (1936) The composition and apparent digestibility of the flat pea Lathyrus silvestrus (wagneri). J Dairy Sci 19: 531–534.

    Article  CAS  Google Scholar 

  • Holtenius P (1957) Nitrite poisoning in sheep, with special reference to the detoxification of nitrite in the rumen. Acta Agric Scand 7: 113–163.

    Article  CAS  Google Scholar 

  • Hooper PT (1978) Pyrrolizidine alkaloid poisoning-pathology with particular reference to difference in animal and plant species. In: Keeler RF, Van Kampen KR, James LF, eds. Effects of Poisonous Plants on Livestock. New York: Academic Press.

    Google Scholar 

  • Howarth RE (1975) A review of bloat in cattle. Can Vet J 16: 281–294.

    PubMed  CAS  Google Scholar 

  • Howarth RE, Cheng KJ, Majak W, Costerton JW (1986) Ruminant bloat. In: Milligan LP, Grovum WL, Dobson A., eds. Control of Digestion and Metabolism in Ruminants, pp. 516–527. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Huber TL (1976) Physiological effects of acidosis on feedlot cattle. J Anim Sci 43: 902–909.

    PubMed  CAS  Google Scholar 

  • Hudman JF, Glenn AR (1984) Selenium uptake and incorporation by Selenomonas ruminantium. Arch Microbiol 140: 252–256.

    Article  PubMed  CAS  Google Scholar 

  • Hudman JF, Glenn AR (1985) Selenium uptake by Butyrivibrio fibrisolvens and Bacteroides ruminicola. FEMS Microbiol Lett 27: 215–220.

    Article  CAS  Google Scholar 

  • Hult K, Tieling A, Gatenbeck S (1976) Degradation of ochratoxin A by a ruminant. Appl Environ Microbiol 32: 443.

    PubMed  CAS  Google Scholar 

  • Hungate RE, Dougherty RW, Bryant MP, Cello RM (1952) Microbiological and physiological changes associated with acute indigestion in sheep. Cornell Vet 42: 423–449.

    PubMed  CAS  Google Scholar 

  • Hungate RE, Reichl J, Prins R (1971) Parameters of rumen fermentations in a continuously fed sheep: evidence of a microbial rumination pool. Appl Microbiol 22: 1104–1113.

    PubMed  CAS  Google Scholar 

  • Iiyama K, Lam TBT, Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29: 733–737.

    Article  CAS  Google Scholar 

  • Jakoby WB, Ziegler DM (1990) The enzymes of detoxification. J Biol Chem 265: 20715–20718.

    PubMed  CAS  Google Scholar 

  • James LF, Allison MJ, Littledike ET (1975) Production and modification of toxic substances in the rumen. In: Digestion and Metabolism in the Rumen, pp. 576–590. Armidale, Australia: University of New England Publishing Unit.

    Google Scholar 

  • James LF, Panter KE, Molyneux RJ (1992) Selenium poisoning in livestock. In: James LF, Keeler RF, Bailey EM, Cheeke PR, Hegarty MP, eds. Poisonous Plants. Proceedings of the Third International Symposium, pp. 153–158. Ames: Iowa State University Press.

    Google Scholar 

  • Jones GA (1972) Dissimilatory metabolism of nitrate by the rumen microbiota. Can J Microbiol 18: 1783–1787.

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ (1981) Does ruminai metabolism of mimosine explain the absence of Leucaena toxicity in Hawaii? Aust Vet J 57: 55.

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, Megarrity RG (1983) Comparable toxicity responses of goats fed Leucaena leucocephala in Australia and Hawaii. Aust J Agric Res 34: 781–790.

    Article  CAS  Google Scholar 

  • Jones RJ, Ford CW, Megarrity RG (1985) Conversion of 3, 4-DHP to 2, 3-DHP by rumen bacteria. Leucaena Res Rep 6: 3–4.

    Google Scholar 

  • Jones RJ, Megarrity RG (1986) Successful transfer of DHP-degrading bacteria fron Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust Vet J 63: 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, Lowry JB (1984) Australian goats detoxify the goitrogen 3-hydroxy-4(1H)pyridone (DHP) after rumen infusions from an Indonesian goat. Experientia 40: 1435–1436.

    Article  PubMed  CAS  Google Scholar 

  • Jung HG, Deetz DA (1993) Cell wall lignification and degradability. In: Jung HG, Buxton DR, Hatfield RD, Ralph J, eds. Forage Cell Wall Structure and Digestibility, pp. 315–346. Madison, Wisc: ASA-CSSA-SSSA.

    Google Scholar 

  • Jung HG, Fahey GC, Garst JE (1983a) Simple phenolic monomers of forages and effects of in vitro fermentation on cell wall phenolics. J Anim Sci 57: 1294–1305.

    CAS  Google Scholar 

  • Jung HG, Fahey GC, Merchen NR (1983b) Effects of ruminant digestion and metabolism on phenolic monomers of forages. Br J Nutr 50: 637–651.

    Article  PubMed  CAS  Google Scholar 

  • Kariya R, Morita Z, Oura R, Sekine J (1989) The in vitro study on the rates of starch consumption and volatile fatty acid production by rumen fluid with or without ciliates. Jpn J Zootech Sci 60: 609–613.

    CAS  Google Scholar 

  • Kellerman TS, Coetzer JAW, Naudé TW (1988) Plant Poisonings and Toxicoses of Livestock in Southern Africa. Cape Town: Oxford University Press.

    Google Scholar 

  • Kelly RW, Lindsay DR (1975) Change with length of feeding period in the oestrogenic response of ovariectomized ewes to ingested coumestants. Aust J Agric Res 26: 305–311.

    Article  Google Scholar 

  • Kiessling KH, Pettersson H, Sandholm K, Olsen M (1984) Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl Environ Microbiol 47: 1070.

    PubMed  CAS  Google Scholar 

  • King DR, Oliver AJ, Mead RJ (1978) The adaption of some Western Australian mammals to food plants containing fluoroacetate. Aust J Zool 26: 699.

    Article  CAS  Google Scholar 

  • King DR, Oliver AJ, Mead RJ (1981) Bettongia and fluoroacetate: a role for 1080 in fauna management. Aust Wildl Res 8: 529.

    Article  Google Scholar 

  • King RR, McQueen RE, Levesaue D, Greenhaigh R (1984) Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J Agric Food Chem 32: 1181.

    Article  CAS  Google Scholar 

  • Kondo T, Mizuno K, Kato T (1990) Cell wall-bound p-coumaric and ferulic acids in Italian ryegrass. Can J Plant Sci 71: 495–499.

    Article  Google Scholar 

  • Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144: 8–14.

    Article  CAS  Google Scholar 

  • Kun E, Kirsten E, Sharma ML (1978) Catalytic mechanism of citrate transport through the inner mitochondrial membrane: enzymatic synthesis and hydrolysis of glutathionecitric acid thioester. In: Azzone GF, ed. The Proton and Calcium Pumps, pp. 285–295. Amsterdam: Elsevier.

    Google Scholar 

  • Kurmanov IA (1977) Fusariotoxicosis in cattle and sheep. In: Mycotoxic Fungi, Mycotoxins and Mycotoxicosis, Vol. 3, pp. 85–110. New York: Marcel Dekker.

    Google Scholar 

  • Lacoste AM, Lemoigne MM (1961) Degradation du tryptophane par les bacteries de la panse des ruminants. C R Acad Sci 252: 1233–1235.

    CAS  Google Scholar 

  • Ladd JN, Walker DL (1965) Fermentation of lactic acid by the rumen microorganism Peptostreptococcus elsdenii. Ann NY Acad Sci 119: 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (1990) Distribution of free and combined phenolic acids in wheat internodes. Phytochemistry 29: 429–433.

    Article  Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (1992) Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes. Phytochemistry 31: 1179–1183.

    Article  Google Scholar 

  • Lanigan GW (1971) Metabolism of pyrrolizidine alkaloids in the ovine rumen. III. The competitive relationship between heliotrine metabolism and methanogenesis in rumen fluid in vitro. Aust J Agric Res 22: 123–130.

    Article  CAS  Google Scholar 

  • Lanigan GW (1972) Metabolism of pyrroliziodine alkaloids in the ovine rumen. IV. Effects of chloral hydrate and halogenated methanes on rumen methanogenesis and alkaloid metabolism in fistulated sheep. Aust J Agric Res 23: 1085–1091.

    Article  CAS  Google Scholar 

  • Lanigan GW (1976) Peptococcus heliotrinereducens, sp. nov., a cytochrome-producing anaerobe which metabolizes pyrrolizidine alkaloids. J Gen Microbiol 94: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Latham MJ, Sharpe ME, Sutton JD (1971) The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation. J Appl Bacteriol 34: 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Latham MJ, Storry JE, Sharpe ME (1972) Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl Microbiol 24: 871–877.

    PubMed  CAS  Google Scholar 

  • Lewis D (1951a) The metabolism of nitrate and nitrite in the sheep. 1. The reduction of nitrate in the rumen of the sheep. Biochem J 48: 175–180.

    PubMed  CAS  Google Scholar 

  • Lewis D (1951b) The metabolism of nitrate and nitrite in the sheep. 2. Hydrogen donators in nitrate reduction by rumen microorganisms in vitro. Biochem J 49: 149–153.

    PubMed  CAS  Google Scholar 

  • Lewis TR, Emery RS (1962a) Relative deamination rates of amino acids by rumen microorganisms. J Dairy Sci 45: 765–768.

    Article  CAS  Google Scholar 

  • Lewis TR, Emery RS (1962b) Intermediate products in the catabolism of amino acids by rumen microorganisms. J Dairy Sci 45: 1363–1368.

    Article  CAS  Google Scholar 

  • Lewis TR, Emery RS (1962c) Metabolism of amino acids in the bovine rumen. J Dairy Sci 45: 1487–1492.

    Article  CAS  Google Scholar 

  • Long TA, Washko JB, Palmer WL (1977) Flat pea hay promising as ruminant forage. Sci Agric 24: 711.

    Google Scholar 

  • Lowry JB (1990) Metabolic and nutritional significance of the cell-wall phenolic fraction. In: Akin DE, Ljungdahl LG, Wilson JR, Harris PJ, eds. Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 119–126. New York: Elsevier.

    Google Scholar 

  • Lowry JB, Tangendjaja M, Tangendjaja B (1983) Autolysis of mimosine to 3-hydroxy-4-1(H)pyridone in green tissues of Leucaena leucocephala. J Sci Food Agric 34: 529–533.

    Article  CAS  Google Scholar 

  • Lowry JB, Sumpter EA, McSweeney CS, Schlink AC, Bowden B (1993) Phenolic acids in the fibre of some tropical grasses, effect on feed quality, and their metabolism by sheep. Aust J Agric Res 44: 1123–1133.

    Article  CAS  Google Scholar 

  • Mackie RI, Gilchrist FMC (1979) Changes in lactate-producing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation of sheep to high concentrate diets. Appl Environ Microbiol 38: 422–430.

    PubMed  CAS  Google Scholar 

  • Mackie RI, Gilchrist FMC, Robberts AM, Hannah PE, Schwartz HM (1978) Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J Agric Sci Camb 90: 241–254.

    Article  CAS  Google Scholar 

  • Mackie RI, McSweeney CS (1991) Microbiology of foregut and hindgut fermentation. In: Ho YW, Wong HK, Abdullah N, Tajuddin ZA, eds. Recent Advances on the Nutrition of Herbivores, pp. 189–197. Kuala Lumpur: Malaysian Society of Animal Production.

    Google Scholar 

  • Majak W, Cheng KJ (1984) Cyanogenesis in bovine rumen fluid and pure cultures of rumen bacteria. Can J Anim Sci 59: 784.

    CAS  Google Scholar 

  • Majak W, Clark LJ (1980) Metabolism of aliphatic nitro compounds in bovine rumen fluid. Can J Anim Sci 60: 319.

    Article  CAS  Google Scholar 

  • Majak W, Pass MA (1989) Aliphatic nitro-compounds. In: Cheeke PR, ed. Toxicants of Plant Origin. Vol. II, Glycosides, pp. 143–159. Boca Raton, Fla: CRC Press.

    Google Scholar 

  • Majak W, Cheng K-J (1981) Identification of rumen bacteria that anaerobically degrade aliphatic nitrotoxins. Can J Microbiol 27: 646–650.

    Article  PubMed  CAS  Google Scholar 

  • Majak W, Cheng K-J (1983) Recent studies on ruminai metabolism of 3-nitropropanol in cattle. Toxicon 3(suppl): 265–268.

    Article  Google Scholar 

  • Majak W, Clark LJ (1980) Metabolism of aliphatic nitro compounds in bovine rumen fluid. Can J Anim Sci 60: 319–325.

    Article  CAS  Google Scholar 

  • Majak W, Cheng K-J, Hall JW (1982) The effect of cattle diet on the metabolism of 3-nitro-propanol by ruminai microorganisms. Can J Microbiol 62: 855–860.

    CAS  Google Scholar 

  • Majak W, Cheng K-J, Hall JW (1986) Enhanced degradation of 3-nitro-propanol by ruminai microorganisms. J Anim Sci 62: 1072–1080.

    PubMed  CAS  Google Scholar 

  • Mangan JL (1988) Nutritional effects of tannins in animal feeds. Nutr Res Rev 1: 209–231.

    Article  PubMed  CAS  Google Scholar 

  • Marais JSC (1944) Monofluoroacetic acid, the toxic principle of Gifblaar, Dichapetalum cymosum (Hook) Engl Onderstepoort. J Vet Sci Anim Ind 20: 67.

    CAS  Google Scholar 

  • Martin AK (1982a) The origin of urinary aromatic compounds excreted by ruminants. 2. The metabolism of phenolic cinnamic acids to benzoic acid. Br J Nutr 47: 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Martin AK (1982b) The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols by ruminants. Br J Nutr 48: 497–507.

    Article  PubMed  CAS  Google Scholar 

  • Mattocks AR (1968) Toxicity of pyrrolizidine alkaloids. Nature (London) 217: 723–728.

    Article  CAS  Google Scholar 

  • Mattocks AR (1981) Relation of structural features to pyrrolic metabolites in livers of rats given pyrrolizidine alkaloids and derivatives. Chem Biol Interact 35: 301–310.

    Article  PubMed  CAS  Google Scholar 

  • McEwen T (1978) Organo-fluorine compounds in plant. In: Keeler RF, Van Campen KR, James LF, eds. Effects of Poisonous Plants on Livestock, New York: Academic Press.

    Google Scholar 

  • McSweeney CS, Allison MJ, Mackie RI (1993a) Amino acid utilization by the ruminai bacterium Synergistes jonesii strain 78-1. Arch Microbiol 159: 131–135.

    Article  Google Scholar 

  • McSweeney CS, Mackie RI, Odenyo AA, Stahl DA (1993b) Development of an oligonu-cleotide probe targeting 16S rRNA and its application for detection and quantitation of the ruminai bacterium Synergistes jonesii in a mixed-population chemostat. Appl Environ Microbiol 59: 1607–1612.

    PubMed  CAS  Google Scholar 

  • Mead RJ, Oliver AJ, King DR (1979) Metabolism and defluorination and fluoroacetate in the brush-tailed possum (Trichosurus vulpecula). Aust J Biol Sci 32: 15.

    PubMed  CAS  Google Scholar 

  • Mead RJ, Moulden DL, Twigg LE (1985) Significance of sulfhydryl compounds in the manifestation of fluoroacetate toxicity to the rate, brush-tail possum, woylie and Western grey kangaroo. Aust J Biol Sci 38: 139.

    PubMed  CAS  Google Scholar 

  • Mishra BD, Fina LR, Bartley EE, Claydon TJ (1967) Bloat in cattle. XI. The role of rumen aerobic (facultative) mucinolytic bacteria. J Anim Sci 26: 606–612.

    PubMed  CAS  Google Scholar 

  • Mishra BD, Bartley EE, Fina LR, Bryant MP (1968) Bloat in cattle. XIV. Mucinolytic activity of several anaerobic rumen bacteria. J Anim Sci 27: 1651–1656.

    PubMed  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56: 482–507.

    PubMed  CAS  Google Scholar 

  • Morris MP, Garcia-Rivera J (1955) The destruction of oxalates by rumen contents of cows. J Dairy Sci 38: 1169.

    Article  CAS  Google Scholar 

  • Murdiati TB, McSweeney CS, Lowry JB (1992) Metabolism in sheep of gallic acid, tannic acid and hydrolysable tannin from Terminalia oblongata. Aust J Agric Res 43: 1307–1319.

    Article  CAS  Google Scholar 

  • Naga MA, Harmeyer JH, Hoeller H, Schaller K (1975) Suspected B-vitamin deficiency of sheep fed a protein-free urea containing purified diet. J Anim Sci 40: 1192–1198.

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Tada Y, Shibuya J, Yoshida J, Nakamura R (1979) The influence of concentrates on the nitrate metabolism of sheep. Jpn J Zootech Sci 50: 782–789.

    CAS  Google Scholar 

  • Newbold CJ, Williams AG, Chamberlain DG (1987) The in vitro metabolism of DL-lactic acid by rumen microorganisms. J Sci Food Agric 38: 9–18.

    Article  CAS  Google Scholar 

  • Newton WA, Snell EE (1964) Catalytic properties of tryptophanase, a multifunctional pyrodoxal phosphate enzyme. Proc Natl Acad Sci USA 51: 382–389.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson A (1961) Demethylation of the plant oestrogen biochanin A in the rat. Nature 192: 358.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson A (1962) Demethylation of the plant estrogen formononetin to daidzein in rumen fluid. Ark Kemi 19: 549–550.

    CAS  Google Scholar 

  • Nilsson A, Hill JL, Davies HL (1967) An in vitro study of formononetin and biochanin A metabolism in rumen fluid from sheep. Biochim Biophys Acta 148: 92–98.

    Article  PubMed  CAS  Google Scholar 

  • Oliver AJ, King DR, Mead RJ (1979) Fluoroacetate tolerance, a genetic marker in some Australian mammals. Aust J Zool 27: 363.

    Article  CAS  Google Scholar 

  • Peterson PJ, Spedding DJ (1963) The excretion by sheep of 75selenium incorporated into red clover (Trifolium pratense L.): The chemical nature of the excreted selenium and its uptake by three plant species. NZ J Agric Res 6: 13–23.

    Article  CAS  Google Scholar 

  • Phillipson AT, Reid RS (1957) Thiamin and niacin in the rumen. J Anim Sci 59: 813–822.

    Google Scholar 

  • Porter JWG (1961) Vitamin synthesis in the rumen. In: Lewis D, ed. Digestive Physiology and Nutrition of the Ruminant, pp. 226–234. London: Butterworths.

    Google Scholar 

  • Potter EL, Dehority BA (1973) Effects of changes in feed level, starvation, and level of feed after starvation upon the concentration of rumen protozoa in the ovine. Appl Microbiol 26: 692–698.

    PubMed  CAS  Google Scholar 

  • Provenza FD, Pfister JA (1991) Ingestion of plant toxins on food ingestion by herbivores. In: Ho YW, Wong HK, Abdullah N, Tajuddin ZA, eds. Recent Advances on the Nutrition of Herbivores, pp. 199–206. Kuala Lumpur: Malaysian Society of Animal Production.

    Google Scholar 

  • Purser DB, Moir RJ (1959) Ruminai flora studies in the sheep. IX. The effect of pH on ciliate population of the rumen in vivo. Aust J Agric Res 10: 555–564.

    Article  CAS  Google Scholar 

  • Raisbeck MF (1982) Is polioencephalomalacia associated with high-sulfate diets. J Am Vet Med Assoc 180: 1303–1305.

    PubMed  CAS  Google Scholar 

  • Rammell CG, Hill JH (1986) A review of thiamine deficiency in ruminants. Vet Ann 25: 71–77.

    Google Scholar 

  • Ramos JL, Timmis KN (1987) Experimental evolution of catabolic pathways of bacteria. Microbiol Sci 4: 228–237.

    PubMed  CAS  Google Scholar 

  • Rasmussen MA, Foster JG, Allison MJ (1992) Lathyrus sylvestris (flatpea) toxicity in sheep and ruminai metabolism of flatpea neurolathyrogens. In: James LF, Keeler RF, Bailey EM, Cheeke PR, Hegarty MP, eds. Poisonous Plants. Proceedings of the Third International Symposium, pp. 377–381. Ames: Iowa State University Press.

    Google Scholar 

  • Rasmussen MA, Allison MJ, Foster JG (1993) Flatpea intoxication in sheep and indications of ruminai adaptation. Vet Hum Toxicol 35: 123–127.

    PubMed  CAS  Google Scholar 

  • Rasmussen MA, James LF (1994) Selenium metabolism in the rumen. In: Colegate SM, Dorling PR, eds. Plant-Associated Toxins: Agricultural, Phytochemical and Ecological Aspects. Wallingford, U.K.: CAB International.

    Google Scholar 

  • Reid CSW, Clarke RTJ, Cockrem FRM, Jones WT, Mclntosh JT, Wright DE (1975) Physiological and genetical aspects of pasture (legume) bloat. In: McDonald IW, Warner ACI, eds. Digestion and Metabolism in the Ruminant, pp. 524–536. Armidale, Australia: University of New England Publishing Unit.

    Google Scholar 

  • Ressler C (1964) Neurotoxic amino acids of certain species of Lathyrus and vetch. Fed Proc 23: 1350–1353.

    PubMed  CAS  Google Scholar 

  • Rosenthal GA, Janzen DH (1979) Herbivores: Their Interactions With Secondary Plant Metabolites. New York: Academic Press.

    Google Scholar 

  • Roth CW, Hoch JA, Demoss RD (1971) Physiological studies of biosynthesis indole excretion in Bacillus alvei. J Bacteriol 106: 97–106.

    PubMed  CAS  Google Scholar 

  • Ruan Z-S, Anantharam V, Crawford IT, et al. (1992) Identification, purification, and reconstitution of Oxit, the oxalate: formate antiport protein of Oxalobacter formigenes. J Biol Chem 267: 10537–10543.

    PubMed  CAS  Google Scholar 

  • Russell GR, Smith RM (1968) Reduction of heliotrine by a rumen microorganism. Aust J Biol Sci 21: 1277–1290.

    PubMed  CAS  Google Scholar 

  • Russell JB, Baldwin RL (1978) Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Appl Environ Microbiol 36: 319–329.

    PubMed  CAS  Google Scholar 

  • Russell JB, Baldwin RL (1979) Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture. Appl Environ Microbiol 37: 537–543.

    PubMed  CAS  Google Scholar 

  • Russell JB, Hino T (1985) Regulation of lactate production in Streptococcus bovis: a spiraling effect that leads to rumen acidosis. J Dairy Sci 68: 1712–1721.

    Article  PubMed  CAS  Google Scholar 

  • Sagar RL, Hamar DW, Gould DH (1990) Clinical and biochemical alterations in calves with nutritionally induced polioencephalomalacia. Am J Vet Res 51: 1969–1974.

    Google Scholar 

  • Sapienza CA, Brent BE (1974) Ruminai thiaminase vs. concentrate adaptation. J Anim Sci 39: 252. Abstract.

    Google Scholar 

  • Sapiro ML, Hoflund S, Clark R, Quin JI (1949) Studies on the alimentary tract of the Merino sheep in South Africa. XVI. The fate of nitrate in ruminai ingesta as studied in vitro. Onderstepoort J Vet Sci 22: 357–372.

    CAS  Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, King JMH (1990) Catabolic plasmids of environmental and ecological significance. Microbiol Ecol 19: 1–20.

    Article  CAS  Google Scholar 

  • Scheifinger CC, Latham MJ, Wolin MJ (1975) Relatonship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl Microbiol 30: 916–921.

    CAS  Google Scholar 

  • Selman IE, Wiseman A, Pirie HM, Breeze RG (1974) Fog fever in cattle: clinical and epidemiological features. Vet Rec 95: 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Selman IE, Wiseman A, Breeze RG, Pirie HM (1976) Fog fever in cattle: various theories on its aetiology. Vet Rec 99: 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Sharrow SH, Mosher WD (1982) Sheep as a biological control agent for tansy ragwort. J Range Man 35: 480–482.

    Article  Google Scholar 

  • Shull LR, Cheeke PR (1983) Effects of synthetic and natural toxicants on livestock. J Anim Sci 57(suppl 2): 330.

    PubMed  CAS  Google Scholar 

  • Shull LR, Buckmaster GW, Cheeke PR (1976) Factors influencing pyrrolizidine (Senecio) alkaloid metabolism: Species, liver sulfhydryls and rumen fermentation. J Anim Sci 43: 1247–1253.

    PubMed  CAS  Google Scholar 

  • Simpson FJ, Jones GA, Wolin EA (1969) Anaerobic degradation of some bioflavonoids by microflora of the rumen. Can J Microbiol 15: 972–974.

    Article  PubMed  CAS  Google Scholar 

  • Stanier RY (1951) Enzymatic adaptation in bacteria. Annu Rev Microbiol 5: 35–56.

    Article  PubMed  CAS  Google Scholar 

  • Susmel P, Stefanon B (1993) Aspects of lignin degradation by rumen microorganisms. J Biotechnol 30: 141–148.

    Article  CAS  Google Scholar 

  • Swanson SP, Helaszek C, Buck WB, Rood HD, Haschek WM (1988) The role of intestinal microflora in the metabolism of trichothecene mycotoxins. Food Chem Toxicol 26: 823.

    Article  PubMed  CAS  Google Scholar 

  • Swick RA, Cheeke PR, Ramsdell HS, Buhler DR (1983) Effect of sheep fermentation and methane inhibition on toxicity of Senecio jacobaea. J Anim Sci 56: 645–654.

    PubMed  CAS  Google Scholar 

  • Takahashi J, Masuda Y, Miyaga E (1978) Effect of pH and level of nitrate on the reduction of nitrate and nitrite in vitro. Jpn J Zootech Sci 49: 1–5.

    CAS  Google Scholar 

  • Takahashi J, Masuko T, Endo S, Dodo K, Fujita H (1980) Effects of dietary protein and energy levels on the reduction of nitrate and nitrite in the rumen and methemoglobin formation in sheep. Jpn J Zootech Sci 51: 626–631.

    CAS  Google Scholar 

  • Therion JJ, Kistner A, Kornelius JH (1982) Effect of pH on growth rates of rumen amylolytic and lactolytic bacteria. Appl Environ Microbiol 44: 428–434.

    PubMed  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG (1992) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38: 1328–1333.

    Article  CAS  Google Scholar 

  • Tsai CG, Jones GA (1975) Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can J Microbiol 21: 749–801.

    Article  Google Scholar 

  • Turnbull KE, Braden AWH George JM (1966) Fertilization and early embryonic loss in ewes that had grazed oestrogenic pastures for 6 years. Aust J Agric Res 17: 907–917.

    Article  Google Scholar 

  • Ueno Y (1984) General toxicology. In: Ueno Y, ed. Trichothecenes: Chemical Biological and Toxicological Aspects. New York: Elsevier Scientific.

    Google Scholar 

  • Van der Meer JR, de Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Appl Environ Microbiol 56: 677–694.

    Google Scholar 

  • Van Etten CH, Miller RW (1963) The neuroactive factor alpha-gamma diaminobutyric acid in angiospermous seeds. Econ Botany 17: 107–109.

    Article  Google Scholar 

  • Wachenheim DE, Blythe LL, Craig AM (1992) Characterization of rumen bacterial pyrrolizidine alkaloid biotransformation in ruminants of various species. Vet Hum Toxicol 34: 513–517.

    PubMed  CAS  Google Scholar 

  • Wallace RJ (1978) Control of lactate production by Selenomonas ruminantium: homotrophic activation of lactate dehydrogenase by pyruvate. J Gen Microbiol 107: 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Warner ACI (1962) Some factors influencing the rumen microbial population. J Gen Microbiol 28: 129–146.

    Article  PubMed  CAS  Google Scholar 

  • Watts PS (1957) Decomposition of oxalic acid in vitro by rumen contents. Aust J Agric Res 8: 266–270.

    Article  CAS  Google Scholar 

  • Westlake K, Mackie RI, Dutton M (1987a) T-2 toxin metabolism by ruminai bacteria and its effect on their growth. Appl Environ Microbiol 53: 587.

    PubMed  CAS  Google Scholar 

  • Westlake K, Mackie RI, Dutton M (1987b) Effects of several mycotoxins on the specific growth rate of Butyrivibrio fibrisolvens and toxin degradation in vitro. Appl Environ Microbiol 53: 613.

    PubMed  CAS  Google Scholar 

  • Westlake K, Mackie RI, Dutton M (1989) In vitro metabolism of mycotoxins by bacterial, protozoal and ovine ruminai fluid preparations. Anim Feed Sci Technol 25: 169.

    Article  CAS  Google Scholar 

  • Williams MC, Barneby RC (1977) The occurrence of nitro-toxins in North American Astragalus (Fabaceae). Britonia 29: 310–326.

    Article  CAS  Google Scholar 

  • Williams AG, Coleman GS (1992) In: The Rumen Protozoa. New York: Springer-Verlag.

    Book  Google Scholar 

  • Yang JNY, Carlson JR (1972) Effects of high tryptophan doses and two experimental rations on the excretion of urinary tryptophan metabolites in cattle. J Nutr 102: 1655–1666.

    PubMed  CAS  Google Scholar 

  • Yokoyama MT, Carlson JR (1974) Dissimilation of tryptophan and related indolic compounds by ruminai microorganisms in vitro. Appl Microbiol 27: 540–548.

    PubMed  CAS  Google Scholar 

  • Yokoyama MT, Carlson JR, Holdeman LV (1977) Isolation and characteristics of a skatole producing Lactobacillus sp. from the bovine rumen. Appl Environ Microbiol 34: 837–842.

    PubMed  CAS  Google Scholar 

  • Yung HG, Deetz DA (1993) Cell wall lignification and degradability. In: Jung HG, Buxton DR, Hatfield RD, Ralph J, eds. Forage Cell Wall Structure and Digestibility, pp. 315–346. Madison, Wisc: ASA-CSSA-SSSA.

    Google Scholar 

  • Yung HG, Fahey GC, Garst JE (1983a) Simple phenolic monomers of forages and effects of in vitro fermentation on cell wall phenolics. J Anim Sci 57: 1294–1305.

    Google Scholar 

  • Yung HG, Fahey GC, Merchen NR (1983b) Effects of ruminant digestion and metabolism on phenolic monomers of forages. Br J Nutr 50: 637–651.

    Article  Google Scholar 

  • Zhu J (1993) Tannin toxicity studies in mice and sheep. Ph.D. thesis, University of Queensland, Brisbane, Australia.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McSweeney, C.S., Mackie, R.I. (1997). Gastrointestinal Detoxification and Digestive Disorders in Ruminant Animals. In: Mackie, R.I., White, B.A. (eds) Gastrointestinal Microbiology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4111-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4111-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6843-4

  • Online ISBN: 978-1-4615-4111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation