Digestion of Nitrogen in the Rumen: A Model for Metabolism of Nitrogen Compounds in Gastrointestinal Environments

  • Chapter
Gastrointestinal Microbiology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

After energy, nitrogen is quantitatively the most important nutritional requirement for growth of gastrointestinal tract microorganisms. In the rumen and other pregastric environments, nitrogen is derived primarily from the plant material of the diet. In cecal and colonie fermentation, the nitrogen sources include undigested (by the host enzymes) feed materials as well as endogenous sources such as digestive secretions and sloughed intestinal epithelia. In all of these environments, some nitrogen can also be derived from urea, either in the form of dietary urea or endogenous urea that is transferred to the gut via secretion (e.g., saliva) or directly across the epithelium. In addition, gut microorganisms can in themselves provide exogenous nitrogen by lysis and cell turnover. Protozoa derive much of their nitrogen from the uptake of other gut microbes (e.g., bacteria and smaller protozoa).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe M, Iriki T (1989) Mechanism whereby holotrich ciliates are retained in the reticulorumen of cattle. Br J Nutr 62: 579–587.

    PubMed  CAS  Google Scholar 

  • Abou Akkada AR, Howard BH (1962) The biochemistry of rumen protozoa. 5. The nitrogen metabolism of Entodinium. Biochem J 82: 313–320.

    PubMed  CAS  Google Scholar 

  • Abou Akkada AR, el-Shazly K (1964) Effects of the absence of ciliate protozoa from the rumen on microbial activity and grow of lambs. Appl Microbiol 12: 384–390.

    CAS  Google Scholar 

  • Allison MJ (1969) Biosynthesis of amino acids by ruminai microorganisms. J Anim Sci 29: 797–807.

    PubMed  CAS  Google Scholar 

  • Annison EF (1956) Nitrogen metabolism in the sheep. Biochem J 64: 705–714.

    PubMed  CAS  Google Scholar 

  • Appleby JC (1955) The isolation and classification of proteolytic bacteria from the rumen of the sheep. J Gen Microbiol 12: 526–533.

    PubMed  CAS  Google Scholar 

  • Armstead IP, Ling JR (1993) Variations in the uptake and metabolism of peptides and amino acids by mixed ruminai bacteria in vitro. Appl Environ Microbiol 59: 3360–3366.

    PubMed  CAS  Google Scholar 

  • Asao N, Ushida K, Kojima Y (1993) Proteolytic activity of rumen fungi belonging to the genera Neocallimastix and Piromyces. Lett Appl Microbiol 16: 247–250.

    CAS  Google Scholar 

  • Austin J (1967) Urea toxicity and its prevention. In: Briggs MH, ed. Urea as a Protein Supplement, pp. 173–184. London: Pergamon Press.

    Google Scholar 

  • Barrett AJ (1977) Introduction to the history and classification of tissue proteinases. In: Barrett AJ, ed. Proteinases in Mammalian Cells and Tissues, pp. 1–55. New York: Elsevier/North Holland.

    Google Scholar 

  • Bird SH, Leng RA (1978) The effects of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. Br J Nutr 40: 163–167.

    PubMed  CAS  Google Scholar 

  • Blackburn TH (1968a) Protease production by Bacteroides amylophilus strain H 18. J Gen Microbiol 53: 27–36.

    CAS  Google Scholar 

  • Blackburn TH (1968b) The protease liberated from Bacteroides amylophilus strain H 18 by mechanical disintegration. J Gen Microbiol 53: 37–51.

    PubMed  CAS  Google Scholar 

  • Blackburn TH, Hobson PN (1960a) Proteolysis in sheep rumen by whole and fractionated rumen contents. J Gen Microbiol 22: 272–281.

    PubMed  CAS  Google Scholar 

  • Blackburn TH, Hobson PN (1960b) Isolation of proteolytic bacteria from the sheep rumen. J Gen Microbiol 22: 282–289.

    PubMed  CAS  Google Scholar 

  • Blackburn TH, Hobson PN (1962) Further studies on the isolation of proteolytic bacteria from the sheep rumen. J Gen Microbiol 29: 69–81.

    PubMed  CAS  Google Scholar 

  • Blackburn TH, Hullah WA (1974) The cell-bound protease of Bacteroides amylophilus H18. Can J Microbiol 20: 435–441.

    PubMed  CAS  Google Scholar 

  • Bladen HA, Bryant MP, Doetsch RN (1961) A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Appl Microbiol 9: 175–180.

    PubMed  CAS  Google Scholar 

  • Briggs MH (1967) Urea as a Protein Supplement. London: Pergamon Press.

    Google Scholar 

  • Brock FM, Forsberg CW, Buchanan-Smith JG (1982) Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl Environ Microbiol 44: 561–569.

    PubMed  CAS  Google Scholar 

  • Broderick GA, Wallace RJ, McKain NJ (1988) Uptake of small peptides by mixed rumen microorganisms in vitro. J Sci Food Agric 42: 109–118.

    CAS  Google Scholar 

  • Bryant MP, Burkey LA (1953) Numbers and some predominant groups of bacteria in the rumen of cows fed different rations. J Dairy Sci 36: 218–224.

    Google Scholar 

  • Bryant MP, Robinson IM (1961) An improved nonselective culture media for ruminai bacteria and its use in determining diurnal variation in numbers of bacteria in the rumen. J Dairy Sci 44: 1446–1456.

    CAS  Google Scholar 

  • Bryant MP, Small N (1956) The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol 72: 16–21.

    PubMed  CAS  Google Scholar 

  • Bryant MP, Small N, Bouma C, Robinson IM (1958) Characteristics of ruminai anaerobic cellulolytic cocci and Cillobacterium cellulosolvens n. sp. J Bacteriol 76: 529–537.

    PubMed  CAS  Google Scholar 

  • Chalupa W (1968) Problems in feeding urea to ruminants. J Anim Sci 27: 207–219.

    PubMed  CAS  Google Scholar 

  • Chen M, Wolin MJ (1979) Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl Environ Microbiol 38: 72–77.

    PubMed  CAS  Google Scholar 

  • Chen G, Russell JB (1988) Fermentation of peptides and amino acids by a monensin sensitive ruminai peptostreptococcus. Appl Environ Microbiol 54: 2742–2749.

    PubMed  CAS  Google Scholar 

  • Chen G, Russell JB (1989a) More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol 55: 1052–1057.

    PubMed  CAS  Google Scholar 

  • Chen G, Russell JB (1989b) Sodium-dependent transport of branched-chain amino acids by a monensin-sensitive ruminai peptostreptococcus. Appl Environ Microbiol 55: 2658–2663.

    PubMed  CAS  Google Scholar 

  • Chen G, Russell JB (1990) Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminai bacterium. Appl Environ Microbiol 56: 2186–2192.

    PubMed  CAS  Google Scholar 

  • Chen G, Russell JB (1991) Effect of monensin and a protonophore on protein degradation, peptide accumulation, and deamination by mixed ruminai microorganisms in vitro. J Anim Sci 69: 2196–2203.

    PubMed  CAS  Google Scholar 

  • Chen G, Russell JB, Sniffen CJ (1987a) A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminai protein degradation. J Dairy Sci 70: 1211–1219.

    PubMed  CAS  Google Scholar 

  • Chen G, Sniffen CJ, Russell JB (1987b) Concentration and estimated flow of peptides from the rumen of dairy cattle: effects of protein quantity, protein solubility, and feeding frequency. J Dairy Sci 70: 983–992.

    PubMed  CAS  Google Scholar 

  • Chen G, Strobel HJ, Russell JB, Sniffen CJ (1987c) Effect of hydrophobicity on utilization of peptides by ruminai bacteria in vitro. Appl Environ Microbiol 53: 2021–2025.

    PubMed  CAS  Google Scholar 

  • Cheng KJ, Costerton JW (1980) Adherent rumen bacteria — their role in digestion of plant material, urea, and epithelial cells. In: Ruckebusch Y, Thivend P, eds. Digestive Physiology and Metabolism in Ruminants, pp. 227–232. Westport, Conn: AVI Publishing Co.

    Google Scholar 

  • Cheng KJ, Wallace RJ (1979) The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux. Br J Nutr 42: 553–557.

    PubMed  CAS  Google Scholar 

  • Coelho da Silva JF, Seeley RC, Thomson DJ, Beever DE, Armstrong DG (1972) The effect in sheep of physical form on the sites of digestion of a dried lucerne diet. Br J Nutr 28: 43–61.

    PubMed  CAS  Google Scholar 

  • Coleman GS (1964) The metabolism of Escherichia coli and other bacteria by Entodinium caudatum. J Gen Microbiol 37: 209–223.

    PubMed  CAS  Google Scholar 

  • Coleman GS (1967) The metabolism of free amino acids by washed suspensions of the rumen ciliate Entodinium caudatum. J Gen Microbiol 47: 433–447.

    PubMed  CAS  Google Scholar 

  • Coleman GS (1968) The metabolism of bacterial nucleic acid and free components of nucleic acid by the rumen ciliate Entodinium caudatum. J Gen Microbiol 54: 83–96.

    PubMed  CAS  Google Scholar 

  • Coleman GS (1972) The metabolism of starch, glucose, amino acids, purines, pyrimidines and bacteria by the rumen ciliate Entodinium simplex. J Gen Microbiol 71: 117–131.

    PubMed  CAS  Google Scholar 

  • Coleman GS (1979) Rumen ciliate protozoa. In: Biochemistry and Physiology of Protozoa, pp. 381–408. New York: Academic Press.

    Google Scholar 

  • Coleman GS (1980) Rumen ciliate protozoa. In: Lumsden WHR, Muller R, Baker JR, eds. Advances in Parasitology, pp. 121–172. London: Academic Press.

    Google Scholar 

  • Coleman GS (1983) Hydrolysis of fraction 1 leaf protein and casein by rumen entodiniomorphid protozoa. J Appl Bacteriol 55: 111–118.

    CAS  Google Scholar 

  • Coleman GS, Laurie JI (1974) The metabolism of starch, glucose, amino acids, purines, pyrimidines and bacteria by three Epidinium sppisolated from the rumen. J Gen Microbiol 85: 244–256.

    PubMed  CAS  Google Scholar 

  • Coleman GS, Laurie JI (1977) The metabolism of starch, glucose, amino acids, purines, pyrimidines and bacteria by the rumen ciliate Polyplastron multivesiculatum. J Gen Microbiol 98: 29–37.

    PubMed  CAS  Google Scholar 

  • Coleman GS, Sandford DC (1979) The uptake and utilization of bacteria, amino acids, and nucleic acid components by the rumen ciliate Eudiplodinium maggii. J Appl Bacteriol 47: 409–419.

    CAS  Google Scholar 

  • Cook AR (1976) Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. J Gen Microbiol 92: 32–48.

    PubMed  CAS  Google Scholar 

  • Cooper PB, Ling JR (1985) The uptake of peptides and amino acids by rumen bacteria. Proc Nutr Soc 44: 144.

    Google Scholar 

  • Cotta MA (1990) Utilization of nucleic acids by Selenomonas ruminantium and other ruminai bacteria. Appl Environ Microbiol 56: 3867–3870.

    PubMed  CAS  Google Scholar 

  • Cotta MA, Hespell RB (1986) Proteolytic activity of the ruminai bacterium Butyrivibrio fibrisolvens. Appl Environ Microbiol 52: 51–58.

    PubMed  CAS  Google Scholar 

  • Cotta MA, Russell JB (1982) Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. J Dairy Sci 65: 226–234.

    CAS  Google Scholar 

  • Crawford RJ, Hoover WH, Sniffen CJ, Crooker BA (1978) Degradation of feedstuff nitrogen in the rumen vs. nitrogen solubility in three solvents. J Anim Sci 46: 1768–1775.

    CAS  Google Scholar 

  • Crooker BA, Sniffen CJ, Hoover WH, Johnson LL (1978) Solvents for soluble nitrogen measurements in feedstuffs. J Dairy Sci 61: 437–447.

    CAS  Google Scholar 

  • Dehority BA (1966) Characterization of several bovine rumen bacteria isolated with a xylan medium. J Bacteriol 91: 1724–1729.

    PubMed  CAS  Google Scholar 

  • Demeyer DI, Van Nevel CJ (1979) Effect of defaunation on the metabolism of rumen microorganisms. Br J Nutr 42: 515–524.

    PubMed  CAS  Google Scholar 

  • Dinius DA, Simpson ME, Marsh PB (1976) Effect of monensin fed with forage on digestion and the ruminai ecosystem of steers. J Anim Sci 42: 229–234.

    CAS  Google Scholar 

  • Eadie JM, Gill JC (1971) The effect of the presence and absence of rumen ciliate protozoa on the total rumen bacteria counts in lambs. Appl Environ Microbiol 47: 101.

    Google Scholar 

  • Ferguson KA (1975) The protection of dietary proteins and amino acids against microbial fermentation in the rumen. In: McDonald IW, Warner ACI, eds. Digestion and metabolism in the ruminant, pp. 448–464. Armidale, Australia: The University of New England Publishing Unit.

    Google Scholar 

  • Ffoulkes D, Leng RA (1988) Dynamics of protozoa in the rumen of cattle. Br J Nutr 59: 429–436.

    PubMed  CAS  Google Scholar 

  • Flint HJ, Thomson AM (1990) Deoxyribonuclease activity in rumen bacteria. Lett Appl Microbiol 11: 18–21.

    PubMed  CAS  Google Scholar 

  • Forsberg CW, Lovelock LKA, Krumholz L, Buchanan-Smith JG (1984) Protease activities of rumen protozoa. Appl Environ Microbiol 47: 101–110.

    PubMed  CAS  Google Scholar 

  • Fox DG, Sniffen CJ, O’Conner JD, Russell JB, Van Soest PJ (1992) A net carbohydrate and protein system for evaluating cattle diets. III. Cattle requirements and diet adequacy. J Anim Sci 70: 3578–3596.

    PubMed  CAS  Google Scholar 

  • Fulghum RS, Moore WEC (1963) Isolation, enumeration, and characteristics of proteolytic ruminai bacteria. J Bacteriol 85: 808–815.

    PubMed  CAS  Google Scholar 

  • Gibbons RJ, Doetsch RN (1959) Physiological study of an obligately anaerobic ureolytic bacterium. J Bacteriol 77: 417–428.

    PubMed  CAS  Google Scholar 

  • Gill JW, King KW (1958) Nutritional characteristics of a Butyrivibrio. J Bacteriol 75: 666–673.

    PubMed  CAS  Google Scholar 

  • Hamlin LJ, Hungate RE (1956) Culture and physiology of a starch-digesting bacterium (Bacteroides amylophilus n. sp.) from the bovine rumen. J Bacteriol 72: 548–554.

    PubMed  CAS  Google Scholar 

  • Hausinger RP (1986) Purification of a nickel-containing urease from the rumen anaerobe Selenomonas ruminantium. J Biol Chem 261: 7866–7870.

    PubMed  CAS  Google Scholar 

  • Hazlewood GP, Edwards R (1981) Proteolytic activities of a rumen bacterium, Bacteroides ruminicola R8/4. J Gen Microbiol 125: 11–15.

    PubMed  CAS  Google Scholar 

  • Hazlewood GP, Nugent JHA (1978) Leaf fraction 1 protein as a nitrogen source for the growth of a proteolytic rumen bacterium. J Gen Microbiol 106: 369–371.

    CAS  Google Scholar 

  • Hazlewood GP, Orpin CG, Greenwood Y, Black ME (1983) Isolation of proteolytic rumen bacteria by use of selective medium containing leaf fraction 1 protein (ribulosebisphosphate carboxylase). Appl Environ Microbiol 45: 1780–1784.

    PubMed  CAS  Google Scholar 

  • Henderson C, Hobson PN, Summers R (1969) The production of amylase, protease and lipolytic enzymes by two species of anaerobic rumen bacteria. In: Malek I, ed. Continuous Cultivation of Microorganisms, pp. 189–204. New York: Academic Press.

    Google Scholar 

  • Hendrickx H, Martin J (1963) In vitro study of the nitrogen metabolism in the rumen. C R Rech IRSIA 31: 9–66.

    Google Scholar 

  • Hespell RB, Bryant MP (1979) Efficiency of rumen microbial growth: influence of some theoretical and experimental factors on YATP. J Anim Sci 49: 1640–1659.

    PubMed  CAS  Google Scholar 

  • Hiles ID, Gallagher MP, Jamieson DJ, Higgins CF (1987) Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J Mol Biol 195: 125–142.

    PubMed  CAS  Google Scholar 

  • Hino T, Russell JB (1985) The effect of reducing equivalent disposal and NADH/NAD on the deamination of amino acids by intact and cell-free extracts of rumen microorganisms. Appl Environ Microbiol 50: 1368–1374.

    PubMed  CAS  Google Scholar 

  • Hino T, Russell JB (1987) Relative contributions of ruminai bacteria and protozoa to the degradation of protein in vitro. J Anim Sci 64: 261–270.

    PubMed  CAS  Google Scholar 

  • Hobson PN, McDougall El, Summers R (1968) The nitrogen sources of Bacteroides amylophilus. J Gen Microbiol 50: i. Abstrac.

    PubMed  Google Scholar 

  • Houpt TR (1959) Utilization of blood urea in ruminants. Am J Physiol 197: 115–120.

    PubMed  CAS  Google Scholar 

  • Hume ID (1970) Synthesis of microbial protein in the rumen. III. The effect of dietary protein. Aust J Agric Res 21: 305–314.

    CAS  Google Scholar 

  • Hungate RE (1960) Microbial ecology of the rumen. Bacteriol Rev 24: 353–364.

    PubMed  CAS  Google Scholar 

  • Hungate RE (1966) The Rumen and Its Microbes. New York: Academic Press.

    Google Scholar 

  • Hunt WG, Moore RO (1958) The proteolytic system of a gram negative rod isolated from the bovine rumen. Appl Microbiol 6: 36–39.

    PubMed  CAS  Google Scholar 

  • John A, Isaacson HR, Bryant MP (1974) Isolation and characteristics of a ureolytic strain of Selenomonas ruminantium. J Dairy Sci 57: 1003–1014.

    PubMed  CAS  Google Scholar 

  • Jones GA, MacLeod RA, Blackwood AC (1964) Ureolytic rumen bacteria. I. Characteristics of the microflora from a urea-fed sheep. Can J Microbiol 10: 371–378.

    PubMed  CAS  Google Scholar 

  • Jones GA, McAllister TA, Muir AD, Cheng K-J (1994) Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminai bacteria. Appl Environ Microbiol 60: 1374–1378.

    PubMed  CAS  Google Scholar 

  • Kennedy PM (1980) The effects of dietary sucrose and the concentration of plasma urea and rumen ammonia on the degradation of urea in the gastrointestinal tract of cattle. Br J Nutr 43: 125–140.

    PubMed  CAS  Google Scholar 

  • Kennedy PM, Milligan LP (1980) The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Can J Anim Sci 60: 205–221.

    CAS  Google Scholar 

  • Kennedy PM, Clark RTJ, Milligan LP (1981) Influences of dietary sucrose and urea on transfer of endogenous urea to the rumen of sheep and numbers of epithelial bacteria. Br J Nutr 46: 533–541.

    PubMed  CAS  Google Scholar 

  • Kopecny J, Wallace RJ (1982) Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl Environ Microbiol 43: 1026–1033.

    PubMed  CAS  Google Scholar 

  • Leedle JAZ, Bryant MP, Hespell RB (1982) Diurnal variations in bacterial numbers and fluid parameters in ruminai contents of animals fed low-or high-forage diets. Appl Environ Microbiol 44: 402–412.

    PubMed  CAS  Google Scholar 

  • Leng RA (1982) Dynamics of protozoa in the rumen of sheep. Br J Nutr 48: 399–415.

    PubMed  CAS  Google Scholar 

  • Leng RA, Nolan JV (1984) Nitrogen metabolism in the rumen. J Dairy Sci 67: 1072–1089.

    PubMed  CAS  Google Scholar 

  • Leng RA, Dellow D, Waghorn G (1986) Dynamics of large ciliate protozoa in the rumen of cattle fed on diets of freshly cut grass. Br J Nutr 56: 455–462.

    PubMed  CAS  Google Scholar 

  • Lesk EM, Blackburn TH (1971) Purification of Bacteroides amylophilus protease. J Bacteriol 106: 394–402.

    PubMed  CAS  Google Scholar 

  • Lockwood BC, Coombs GH, Williams AG (1988) Proteinase activity in rumen ciliate protozoa. J Gen Microbiol 134: 2605–2614.

    PubMed  CAS  Google Scholar 

  • Mahadevan S, Sauer FD, Erfle JD (1977) Purification and properties of urease from bovine rumen. Biochem J 163: 495–501.

    PubMed  CAS  Google Scholar 

  • Mahadevan S, Erfle JD, Sauer FD (1980) Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. J Anim Sci 50: 723–728.

    PubMed  CAS  Google Scholar 

  • Mangan (1972) Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of free amino acids. Br J Nutr 27: 261–293.

    PubMed  CAS  Google Scholar 

  • Mangan JL, West J (1977) Ruminai digestion of chloroplasts and the protection of protein by glutaraldehyde treatment. J Agric Sci (Camb) 89: 3–15.

    Google Scholar 

  • Mathison GW, Milligan LP (1971) Nitrogen metabolism in sheep. Br J Nutr 25: 351–366.

    PubMed  CAS  Google Scholar 

  • McAllan AB (1982) The fate of nucleic acids in ruminants. Proc Nutr Soc 41: 309–317.

    PubMed  CAS  Google Scholar 

  • McAllan AB, Smith RH (1973a) Degradation of nucleic acids in the rumen. Br J Nutr 29: 331–345.

    PubMed  CAS  Google Scholar 

  • McAllan AB, Smith RH (1973b) Degradation of nucleic acid derivatives by rumen bacteria in vitro. Br J Nutr 29: 467–474.

    PubMed  CAS  Google Scholar 

  • McAllister TA, Phillippe RC, Rode LM, Cheng K-J (1993) Effect of the protein matrix on the digestion of cereal grains by ruminai microorganisms. J Anim Sci 71: 205–212.

    PubMed  CAS  Google Scholar 

  • McKain N, Wallace RJ, Watt ND (1992) Selective isolation of bacteria with dipeptidyl aminopeptidase type I activity from the sheep rumen. FEMS Microbiol Lett 95: 169–174.

    CAS  Google Scholar 

  • McNabb WC, Spencer D, Higgins TJ, Barry TN (1994) In-vitro rates of rumen proteolysis of ribulose-1, 5-bisphosphate carboxylase (Rubisco) from lucerne leaves, and of ovalbumin, vicilin and sunflower albumin 8 storage proteins. J Sci Food Agric 64: 53–61.

    CAS  Google Scholar 

  • Michel V, Fonty G, Millet L, Bonnemoy F, Gouet P (1993) In vitro study of the proteolytic activity of rumen anaerobic fungi. FEMS Microbiol Lett 110: 5–10.

    PubMed  CAS  Google Scholar 

  • Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation and molecular characterization. Microbiol Rev 53: 85–108.

    PubMed  CAS  Google Scholar 

  • Murphy MR, Drone PEL Woodford ST (1985) Factors stimulating migration of holotrich protozoa into the rumen. Appl Environ Microbiol 49: 1329–1331.

    PubMed  CAS  Google Scholar 

  • Naga MA, el-Shazly K (1968) The metabolic characterization of the ciliate protozoon Eudiplodinium medium from the rumen of buffalo. J Gen Microbiol 53: 305–315.

    PubMed  CAS  Google Scholar 

  • Nagaraja TG, Taylor MB (1987) Susceptibility of ruminai bacteria to antimicrobial feed additives. Appl Environ Microbiol 53: 1620–1625.

    PubMed  CAS  Google Scholar 

  • Newbold CJ, Hillman K (1990) The effect of ciliate protozoa on the turnover of bacterial and fungal protein in the rumen of sheep. Lett Appl Microbiol 11: 100–102.

    Google Scholar 

  • Nisman B (1954) The Stickland reaction. Bacteriol Rev 18: 16–42.

    PubMed  CAS  Google Scholar 

  • Nocek JE, Russell JB (1988) Protein and energy as an integrated system. Relationship of ruminai protein and carbohydrate availability to microbial synthesis and milk production. J Dairy Sci 71: 2070–2107.

    CAS  Google Scholar 

  • Nolan JV (1975) Quantitative models of nitrogen metabolism in sheep. In: McDonald IW, Warner ACI, eds. Digestion and Metabolism in the Ruminant, pp. 416–431. Armidale, Australia: University of New England Publishing Unit.

    Google Scholar 

  • Nolan JV, Leng RA (1972) Dynamic aspects of ammonia and urea metabolism in sheep. Br J Nutr 27: 177–194.

    PubMed  CAS  Google Scholar 

  • Norton BW, MacKintosh JB, Armstrong DG (1982) Urea synthesis and degradation in sheep given pelleted-grass diets containing flaked barley. Br J Nutr 48: 249–264.

    PubMed  CAS  Google Scholar 

  • Nugent JHA, Mangan JL (1981) Characteristics of the rumen proteolysis of fraction I (18S) leaf protein from lucerne (Medicago satlva L.). Br J Nutr 46: 39–58.

    PubMed  CAS  Google Scholar 

  • Nugent JHA, Jones WT, Jordan DJ, Mangan JL (1983) Rates of proteolysis in the rumen of the soluble proteins casein, fraction 1 (18S) leaf protein, bovine serum albumin and bovine submaxillary mucoprotein. Br J Nutr 50: 357–368.

    PubMed  CAS  Google Scholar 

  • Onodera R, Koga K (1987) Effect of inhabitation by rumen protozoa on the nutritive value of protein in rumen contents. Agric Biol Chem 51: 1417–1424.

    CAS  Google Scholar 

  • Onodera R, Nakagawa Y, Kandatsu M (1977) Ureolytic activity of the washed cell suspension of rumen ciliate protozoa. Agric Biol Chem 41: 2177–2182.

    CAS  Google Scholar 

  • Orpin CG, Joblin KN (1988) The rumen anaerobic fungi. In: Hobson PN, ed. The Rumen Microbial Ecosystem, pp. 129–150. London: Elsevier Applied Science.

    Google Scholar 

  • Paster B, Russell JB, Yang CMJ, Chow JM, Woese CR, Tanner R (1993) Phylogeny of ammonia-producing ruminai bacteria, Peptostreptococcus anaerobius, Clostridium sticklandii and Clostridium aminophilum sp. nov. Int J Sys Bacteriol 43: 107–110.

    CAS  Google Scholar 

  • Patterson JA, Hespell RB (1985) Glutamine synthetase activity in the ruminai bacterium Succinivibrio dextrinosolvens. Appl Environ Microbiol 50: 1014–1020.

    PubMed  CAS  Google Scholar 

  • Pittman KA, Bryant MP (1964) Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J Bacteriol 88: 401–410.

    PubMed  CAS  Google Scholar 

  • Pittman KA, Lakshmanan S, Bryant MP (1967) Oligopeptide uptake by Bacteroides ruminicola. J Bacteriol 93: 1499–1508.

    PubMed  CAS  Google Scholar 

  • Prins RA, van Rheenen DL, van’t Klooster AT (1983) Characterization of microbial proteolytic enzymes in the rumen. Ant Van Leeuwenhoek 49: 585–595.

    CAS  Google Scholar 

  • Rasmussen MA (1993) Isolation and characterization of Selenomonas ruminantium capable of 2-deoxyribose utilization. Appl Environ Microbiol 59: 2077–2081.

    PubMed  CAS  Google Scholar 

  • Richardson LF, Raun AP, Potter EL, Cooley CO, Rathmacher RP (1976) Effect of monensin on rumen fermentation in vitro and in vivo. J Anim Sci 43: 657–664.

    CAS  Google Scholar 

  • Robinson PH, McQueen RE (1994) Influence of supplemental protein source and feeding frequency on rumen fermentation and performance. J Dairy Sci 77: 1340–1353.

    PubMed  CAS  Google Scholar 

  • Roche C, Albertyn H, van Gylswyk NO, Kistner A (1973) The growth response of cellulolytic acetate-utilizing and acetate-producing butyrivibrios to volatile fatty acids and other nutrients. J Gen Microbiol 78: 253–260.

    PubMed  CAS  Google Scholar 

  • Rodwell VW (1977) Amino acids and peptides. In: Harper HA, Rodwell VW, Mayes PA, eds. Review of physiological chemistry, 16th Ed., pp. 18–35. Los Altos, Calif: Lange Medical Publications.

    Google Scholar 

  • Russell JB (1983) Fermentation of peptides by Bacteroides ruminicola B14. Appl Environ Microbiol 45: 1566–1574.

    PubMed  CAS  Google Scholar 

  • Russell JB (1992) Glucose toxicity and the inability of Bacteroides ruminicola to regulate glucose transport and utilization. Appl Environ Microbiol 58: 2040–2045.

    PubMed  CAS  Google Scholar 

  • Russell JB (1993a) Effect of amino acids on the heat production and growth efficiency of Streptococcus bovis: balance of anabolic and catabolic rates. Appl Environ Microbiol 59: 1747–1747.

    PubMed  CAS  Google Scholar 

  • Russell JB (1993b) The glucose toxicity of Prevotella ruminicola: methylglyoxal accumulation and its effect on membrane physiology. Appl Environ Microbiol 59: 2844–2850.

    PubMed  CAS  Google Scholar 

  • Russell JB, Jeraci JL (1984) Effect of carbon monoxide on fermentation of fiber, starch, and amino acids by mixed rumen microorganisms in vitro. Appl Environ Microbiol 48: 211–217.

    PubMed  CAS  Google Scholar 

  • Russell JB, Robinson PH (1984) Composition and characteristics of strains of Streptococcus bovis. J Dairy Sci 67: 1525–1531.

    PubMed  CAS  Google Scholar 

  • Russell JB, Strobel HJ (1990) ATPase-dependent energy spilling by the ruminai bacterium, Streptococcus bovis. Arch Microbiol 153: 378–383.

    PubMed  CAS  Google Scholar 

  • Russell JB, Wilson DB (1988) Potential opportunities and problems for genetically altered rumen microorganisms. J Nutr 118: 271–279.

    PubMed  CAS  Google Scholar 

  • Russell JB, Bottje WG, Cotta MA (1981) Degradation of protein by mixed cultures of rumen bacteria: identification of Streptococcus bovis as an actively proteolytic rumen bacterium. J Anim Sci 53: 242–252.

    PubMed  CAS  Google Scholar 

  • Russell JB, Sniffen CJ, Van Soest PJ (1983) Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J Dairy Sci 66: 763–775.

    PubMed  CAS  Google Scholar 

  • Russell JB, Strobel HJ, Chen G (1988) The enrichment and isolation of a ruminai bacterium with a very high specific activity of ammonia production. Appl Environ Microbiol 54: 872–877.

    PubMed  CAS  Google Scholar 

  • Russell JB, O’Conner JD, Fox DG, Van Soest PJ, Sniffen CJ (1992) A net carbohydrate and protein system for evaluating cattle diets: I. ruminai fermentation. J Anim Sci 70: 3551–3561.

    PubMed  CAS  Google Scholar 

  • Siddons RC, Paradine J (1981) Effect of diet on protein degrading activity in the sheep. J Sci Food Agric 32: 973–981.

    PubMed  CAS  Google Scholar 

  • Slyter LL, Oltjen RR, Kern DL, Weaver JM (1968) Microbial species including ureolytic bacteria from the rumen of cattle fed purified diets. J Nutr 94: 185–192.

    PubMed  CAS  Google Scholar 

  • Smith RH, McAllan AB (1970) Formation of microbial nucleic acids in the rumen in relation to the digestion of food nitrogen and the fate of dietary nucleic acids. Br J Nutr 24: 545–556.

    PubMed  CAS  Google Scholar 

  • Smith CJ, Hespell RB, Bryant MP (1981) Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium. Appl Environ Microbiol 42: 89–96.

    PubMed  CAS  Google Scholar 

  • Sniffen CJ, O’Conner JD, Van Soest PJ, Fox DG, Russell JB (1992) A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J Anim Sci 70: 3562–3577.

    PubMed  CAS  Google Scholar 

  • Spears JW, Hatfield EE (1978) Nickel for ruminants. I. Influence of dietary nickel on ruminai urease activity. J Anira Sci 47: 1345–1350.

    CAS  Google Scholar 

  • Spears JW, Smith CJ, Hatfield EE (1977) Rumen bacterial urease requirement for nickel. J Dairy Sci 60: 1073–1076.

    PubMed  CAS  Google Scholar 

  • Stern, MD, Hoover WH, Leonard JB (1977) Ultrastructure of rumen holotrichs by electron microscopy. J Dairy Sci 60: 911–918.

    PubMed  CAS  Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. Ant van Leeuwenhoek 39: 545–565.

    CAS  Google Scholar 

  • Strydom E, Mackie RI, Woods DR (1986) Detection and characterization of extracellular proteases in Butyrivibrio fibrisolvens H17c. Appl Microbiol Biotechnol 24: 214–217.

    CAS  Google Scholar 

  • Van Kessel JS, Russell JB (1992) The energetics of arginine and lysine transport by whole cells and membrane vesicles of strain SR, a monensin-sensitive ruminai bacterium. Appl Environ Microbiol 58: 969–975.

    PubMed  Google Scholar 

  • Van Wyk L, Steyn PL (1975) Ureolytic bacteria in sheep rumen. J Gen Microbiol 91: 225–232.

    PubMed  Google Scholar 

  • Van Nevel CJ, Demeyer DI (1977) Effect of monensin on rumen metabolism in vitro. Appl Environ Microbiol 34: 251–257.

    PubMed  Google Scholar 

  • Varel VA, Bryant MP, Holdeman LV, Moore WEC (1974) Isolation of ureolytic Peptostreptococcus productus from feces using defined medium; failure of common urease tests. Appl Microbiol 28: 594–599.

    PubMed  CAS  Google Scholar 

  • Veira DM (1986) The role of ciliate protozoa in nutrition of the ruminant. J Anim Sci 63: 1547–1560.

    PubMed  CAS  Google Scholar 

  • Virtanen AI (1966) Milk production of cows on protein free feed. Science 153: 1603–1614.

    PubMed  CAS  Google Scholar 

  • Waghorn GC, Ulyatt MJ, John A, Fisher MT (1987) The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L. Br J Nutr 57: 115–126.

    PubMed  CAS  Google Scholar 

  • Wallace RJ (1983) Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria. Br J Nutr 50: 345–355.

    PubMed  CAS  Google Scholar 

  • Wallace RJ (1985) Synergism between different species of proteolytic rumen bacteria. Curr Microbiol 12: 59–64.

    Google Scholar 

  • Wallace RJ (1985) Proteolytic activity of large paniculate material in the rumen. Abstracts of XIII Internat Congr Nutr, Brighton, U.K., p. 10.

    Google Scholar 

  • Wallace RJ (1993) Acetylation of peptides inhibits their degradation by rumen microorganisms. Br J Nutr 68: 365–372.

    Google Scholar 

  • Wallace RJ, Brammall ML (1985) The role of different species of bacteria in the hydrolysis of protein in the rumen. J Gen Microbiol 131: 821–832.

    CAS  Google Scholar 

  • Wallace RJ, Cotta MA (1988) Metabolism of nitrogen-containing compounds. In: Hobson PN, ed. The Rumen Microbial Ecosystem, pp. 217–250. London: Elsevier Applied Science.

    Google Scholar 

  • Wallace RJ, Joblin KN (1985) Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol Lett 29: 19–25.

    CAS  Google Scholar 

  • Wallace RJ, Kopecny J (1983) Breakdown of diazotized proteins and synthetic substrates by rumen bacterial proteases. Appl Environ Microbiol 45: 212–217.

    PubMed  CAS  Google Scholar 

  • Wallace RJ, McKain N (1989) Analysis of peptide metabolism by ruminai microorganisms. Appl Environ Microbiol 55: 2372–2376.

    PubMed  CAS  Google Scholar 

  • Wallace RJ, McKain N (1990) A comparison of methods for determining the concentration of extracellular peptides in rumen fluid of sheep. J Agric Sci (Camb) 114: 101–105.

    CAS  Google Scholar 

  • Wallace RJ, McKain N (1991) A survey of peptidase activity in rumen bacteria. J Gen Microbiol 137: 2259–2264.

    PubMed  CAS  Google Scholar 

  • Wallace RJ, Munro CA (1986) Influence of the rumen anaerobic fungus Neocallimastix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on solid substrate. Lett Appl Microbiol 3: 23–26.

    CAS  Google Scholar 

  • Wallace RJ, McPherson CA (1987) Factors affecting the rate of breakdown of bacteria protein in rumen fluid. Br J Nutr 58: 313–323.

    PubMed  CAS  Google Scholar 

  • Wallace RJ, Cheng K-J, Dinsdale D, Orskov ER (1979) An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature 279: 424–426.

    PubMed  CAS  Google Scholar 

  • Wallace RJ, Broderick GA, Brammall ML (1987a) Protein degradation by ruminai microorganisms from sheep fed dietary supplements of urea, casein, or albumin. Appl Environ Microbiol 53: 751–753.

    PubMed  CAS  Google Scholar 

  • Wallace RJ, Broderick GA, Brammall ML (1987b) Microbial protein and peptide metabolism in rumen fluid from faunated and ciliate-free sheep. Br J Nutr 58: 87–93.

    PubMed  CAS  Google Scholar 

  • Wallace RJ, Newbold CJ, McKain N (1990a) Patterns of peptide metabolism by rumen microorganisms. In: Hoshino S, Onodera R, Minato H, Itabashi H., eds. The Rumen Ecosystem: The Microbial Metabolism and Its Regulation, pp. 43–50. Berlin: Springer-Verlag.

    Google Scholar 

  • Wallace RJ, McKain N, Newbold CJ (1990b) Metabolism of small peptides in rumen fluid. Accumulation of intermediates during hydrolysis of alanine oligomers, and comparison of peptidolytic activities of bacteria and protozoa. J Sci Food Agric 50: 191–199.

    CAS  Google Scholar 

  • Wallace RJ, McKain N, Broderick GA (1993) Breakdown of different peptides by Prevotella (Bactemides) ruminicola and mixed microorganisms from the sheep rumen. Curr Microbiol 26: 333–336.

    PubMed  CAS  Google Scholar 

  • Westlake K, Mackie RI (1990) Peptide and amino acid transport in Streptococcus bovis. Appl Microbiol Biotechnol 34: 97–102.

    PubMed  CAS  Google Scholar 

  • Whitaker JR (1994) Principles of Enzymology for the Food Sciences. New York: Marcel Dekker.

    Google Scholar 

  • Williams AG (1986) Rumen holotrich ciliate protozoa. Microbiol Rev 50: 25–49.

    PubMed  CAS  Google Scholar 

  • Williams AG, Coleman GS (1988) The rumen protozoa. In: Hobson PN., ed. The Rumen Microbial Ecosystem, pp. 72–128. London: Elsevier Applied Science.

    Google Scholar 

  • Williams AG, Coleman GS (1992) The Rumen Protozoa. New York: Springer-Verlag.

    Google Scholar 

  • Williams AP, Cockbum JE (1991) Effect of slowly and rapidly degraded protein sources on the concentrations of amino acids and peptides in the rumen of steers. J Sci Food Agric 56: 303–314.

    CAS  Google Scholar 

  • Wright DE (1967) Metabolism of peptides by rumen microorganisms. Appl Microbiol 15: 547–550.

    PubMed  CAS  Google Scholar 

  • Wright DE, Hungate RE (1967) Amino acid concentrations in rumen fluid. Appl Microbiol 15: 148–151.

    PubMed  CAS  Google Scholar 

  • Wolin MJ, Manning GB, Nelson WO (1959) Ammonium salts as a sole source of nitrogen for the growth of Streptococcus bovis. J Bacteriol 78: 147–149.

    PubMed  CAS  Google Scholar 

  • Wolin MJ (1975) Interactions between the bacterial species in the rumen. In: Warner ACI, McDonald IW, eds. Digestion and Metabolism in the Ruminant, pp. 134–148. Armidale, Australia: University of New England Publishing Unit.

    Google Scholar 

  • Wozny MA, Bryant MP, Holdeman LV, Moore WEC (1977) Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. Appl Environ Microbiol 33: 1097–1104.

    PubMed  CAS  Google Scholar 

  • Yang C-MJ, Russell JB (1992) Resistance of proline-containing peptides to ruminai degradation in vitro. Appl Environ Microbiol 58: 3954–3958.

    PubMed  CAS  Google Scholar 

  • Yang CMJ, Russell JB (1993a) The effect of monensin on the specific activity of ammonia production by ruminai bacteria and disappearance of amino nitrogen from the rumen. Appl Environ Microbiol 59: 3250–3254.

    PubMed  CAS  Google Scholar 

  • Yang CMJ, Russell JB (1993b) The effect monensin supplementation on ruminai ammonia accumulation in vivo and the numbers of amino-acid fermenting bacteria. J Anim Sci 71: 3470–3476.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cotta, M.A., Russell, J.B. (1997). Digestion of Nitrogen in the Rumen: A Model for Metabolism of Nitrogen Compounds in Gastrointestinal Environments. In: Mackie, R.I., White, B.A. (eds) Gastrointestinal Microbiology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4111-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4111-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6843-4

  • Online ISBN: 978-1-4615-4111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation