Molecular Basis of Mutagenesis in Escherichia Coli K12 Deficient for DNA Polymerase I: Special Role of the Gtcg Sequence

  • Chapter
Anticarcinogenesis and Radiation Protection 2
  • 111 Accesses

Abstract

The sources of spontaneous mutations and molecular details that underlay the production of spontaneous mutations are still poorly understood. One source is related to DNA metabolism involving DNA replication and repair (1,2). Some of the mutator loci indentified in E. coli are related to structural genes for DNA polymerase, and one of them is related to the polA gene, the gene for DNA polymerase I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B.W. Glickman, P.A. Burns, and D.F. Fix, Mechanisms of spontaneous mutagenesis: Clues from altered mutational specificity in DNA repair-defective strains. In: Antimutagenesis and Anticarcinogenesis Mechanisms (D.M. Schankel, P.E. Hartman, T. Kada, and A. Hollaender, Eds.), pp. 259–281. Plenum Press, New York and London, 1986.

    Chapter  Google Scholar 

  2. R.E. Moses and W.C. Williams, Eds., DNA Replication and Mutagenesis. ASM Press, Washington, D.C., 1989.

    Google Scholar 

  3. A. Kornberg, DNA Replication. W.E. Freeman and Co., San Francisco, 1980.

    Google Scholar 

  4. A. Kornberg, Supplement to DNA replication. W.E. Freeman and Co., San Francisco, 1982.

    Google Scholar 

  5. C.M. Joyce, D.L. 011is, J. Rush, T.A. Steitz, W.H. Konisberg, and N.D.F. Grindley, Relating structure to function for DNA polymerase I of Escherichia coli. In: Protein Structure, Folding and Design, UCLA Symposia on Molecular and Cellular Biology (D. Oxender, Ed.), pp. 197–205. Alan Liss Inc., New York, 1986.

    Google Scholar 

  6. M.B. Coukell and C. Yanofsky, Increased frequency of deletions in DNA polymerase mutants of Escherichia cola. Nature (London) 228:633–636 (1970).

    Article  CAS  Google Scholar 

  7. K.K. Vaccaro and E.C. Siegel, Increased spontaneous reversion of certain frameshift mutations in DNA polymerase I deficient strains of Escherichia cola. Mol. Gen. Genet. 141:251–262 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. E.C. Siegel and K.K. Vaccaro, The reversion of trp frameshift mutations in mut, polA, lig, and dnaE mutant strains of Escherichia coli. Mutat. Res. 50:9–17 (1979).

    Google Scholar 

  9. D.J. Savic and S.P. Romac, Powerful mutator activity of the polAl mutation within the histidine region of Escherichia coli K12. J. Bacteriol. 149:955–960 (1982).

    PubMed  CAS  Google Scholar 

  10. G. Streissinger, Y. Okada, J. Emrich, J. Newton, A. Tsugita, E. Terzagi, and M. Inouye, Frameshift mutations and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 31:7–84 (1966).

    Article  Google Scholar 

  11. D.F. Fix, P.A. Burns, and B.W. Glickman, DNA sequence analysis of spontaneous mutation in PolAl strain of Escherichia coli indicates sequence-specific effects. Mol. Gen. Genet. 207:267–272 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. M. Blanco and L. Pomes, Prophage induction in Escherichia coli K12 deficient in DNA polymerase I. Mol. Gen. Genet. 154:287–292 (1977).

    Article  PubMed  CAS  Google Scholar 

  13. C.M. Joyce and N.D.F. Grindley, Method for determining whether a gene of Escherichia coli is essential: Application on the polA gene. J. Bacteriol. 158:636–643 (1984).

    PubMed  CAS  Google Scholar 

  14. R.M. Schaaper, B.N. Danforth, and B.W. Glickman, Mechanisms of spontaneous mutagenesis and analysis of the spectrum of spontaneous mutations in the Escherichia coli lad gene. J. Mol. Biol. 189:273–284 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. G.R. Smith, Chi hot spots of generalized recombination. Cell 34:709–710 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. D. Lockshon and D.R. Morris, Sites of reaction of Escherichia coli DNA gyrase on pBR322 in vivo as revealed by oxolinic acid-induced plasmid linearization. J. Mol. Biol. 181:63–74 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. R.C. Fuller, B.E. Funnell, and A. Kornberg, The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38:889–900 (1984).

    CAS  Google Scholar 

  18. P. Hermbomel, B. Bourashot, and M. Yaniv, Two distinct enhancers with different cell specificities co-exist in the regulatory region of polyoma. Cell 39:653–662 (1984).

    Article  Google Scholar 

  19. L.S. Ripley and N.B. Schoemaker, A major role for bacteriophage T4 DNA polymerase in frameshift mutagenesis. Genetics 103: 353–366 (1983).

    PubMed  CAS  Google Scholar 

  20. L.S. Ripley and B.W. Glickman, DNA secondary structure and mutation in cellular responses to DNA damage. In: UCLA Symposia on Molecular and Cellular Biology. A New Series (E.C. Friedberg and B.A. Bridges, Eds.), pp. 521–540. Alan Liss Inc., New York, 1984.

    Google Scholar 

  21. M. Jankovic, T. Kostic, B.W. Glickman, and D.J. Savic, DNA sequence analysis of spontaneous histidine mutations in a PolAl strain of Escherichia coli K12 suggests a sequence-specific effect. Mutat. Res. (submitted).

    Google Scholar 

  22. M.S. Carlomagno, L. Chariotti, P. Alifano, A.G. Nappo, and C.B. Bruni, Structure and function of the Salmonella typhimurium and Escherichia coli K12 histidine operons. J. Mol. Biol. 203:585–606 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. P.E. Hartman, B.N. Ames, J.R. Roth, W.M. Barnes, and D.E. Levin, Target sequences for mutagenesis in Salmonella histidine mutants. Environ. Mutagen. 8:631–641 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Savic, D.J., Jankovic, M., Kostic, T., Glickman, B.W. (1991). Molecular Basis of Mutagenesis in Escherichia Coli K12 Deficient for DNA Polymerase I: Special Role of the Gtcg Sequence. In: Nygaard, O.F., Upton, A.C. (eds) Anticarcinogenesis and Radiation Protection 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3850-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3850-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6718-5

  • Online ISBN: 978-1-4615-3850-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation