Phenotypic Complementation of Cells from Human Hereditary Diseases with Defects in Cellular Responses to DNA Damage, by Single Human Chromosomes

  • Chapter
Anticarcinogenesis and Radiation Protection 2

Abstract

A better understanding of the molecular basis of human hereditary disease could be reached by the isolation and characterization of the genes involved. Some studies have approached this problem through genetic linkage analysis: localizing the gene to a particular area of a chromosome and then using techniques such as chromosome walking to identify the gene of interest. This type of analysis is time consuming and labor intensive, and requires access to large numbers of affected families and suitable DNA probes. Certain hereditary diseases offer an alternative approach for gene cloning because they exhibit correctable phenotypes in cultured cells. For example, xeroderma pigmentosum (XP), ataxia telangiectasia (AT), Cockayne’s syndrome and Fanconi’s anemia all display hypersensitivity to various DNA-damaging agents which can be complemented in vitro (1). Unfortunately, attempts to clone these genes through the technique of DNA transfection have met with little success, probably due to the inefficiency of human cells in the uptake and stable expression of large amounts of exogenous DNA (2-4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. C. Friedberg, DNA damage and human disease. In: “DNA Repair,” pp. 505–574. W. H. Freeman, New York, 1985.

    Google Scholar 

  2. H. Lohrer, M. Blum, and P. Herrlich, Ataxia telangiectasia resists gene cloning: An account of parameters determining gene transfer into recipient cells. Mol. Gen. Genet. 212. 474–480 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. L. V. Mayne, T. Jones, S.W. Dean, 5. A. Harcourt, J. E. Lowe, A. Priestly, H. Steingrinsdotter, H. Sykes, M. H. L. Green, and A. R. Lehmann, SV40-transformed normal and DNA-repair-deficient human fibroblasts can be transfected with high frequency but retain only limited amounts of integrated DNA. Gene 66, 65–76 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. M. M. Gebara, C. Drevon, 5. A. Harcourt, H. Steingrinsdotter, M. R. James, J. F. Burke, C. F. Arlett, and A. R. Lehmann, Inactivation of a transfected gene in human fibroblasts can occur by deletion, amplification, phenotypic switching, or methylation. Mol. Cell. Biol. 7, 1459–1464 (1987).

    PubMed  CAS  Google Scholar 

  5. P. J. Saxon, E. 5. Srivatsan, G. V. Leipzig, J. H. Sameshima, and E. J. Stanbridge, Selective transfer of individual human chromosomes to recipient cells. Mol. Cell. Biol. 5, 140–146 (1985).

    PubMed  CAS  Google Scholar 

  6. P. J. Saxon and E. J. Stanbridge, Transfer and selective retention of single specific human chromosomes via microcell-mediated chromosome transfer. Methods Enzymol. 151, 313–325 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. K. Tanaka, I. Satokata, Z. Ogita, T. Uchida, and Y. Okada, Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum. Proc. Natl. Acad. Sci. USA 86, 5512–5516 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. P. J. Southern and P. Berg, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Avpl. Genet. 1, 327–341 (1982).

    CAS  Google Scholar 

  9. J. E. Cleaver, DNA repair in man. Birth Defects 25, 61–82 (1989).

    PubMed  CAS  Google Scholar 

  10. R. B. Painter, Altered DNA synthesis in irradiated and unirradiated ataxia telangiectasia cells. In: “Ataxia Telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood” (R. A. Gatti and M. Swift, Eds.), pp. 89–100. Alan Liss Inc., New York, 1985.

    Google Scholar 

  11. N. G. Jaspers, R. A. Gatti, C. Baan, P. C. Linssen, and D. Bootsma, Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients. Cytogenet. Cell. Genet. 49, 259–263 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. J. E. Cleaver, Xeroderma pigmentosum. In: “The Metabolic Basis of Inherited Disease” (J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. S. Goldstein and M. S. Brown, Eds.), pp. 1227–1248. McGraw-Hill, New York, 1983.

    Google Scholar 

  13. K. H. Kraemer and H. Slor, Xeroderma pigmentosum. Clin. Dermatol. 3, 33–69 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. R. T. Johnson, G. C. Elliott, S. Squires, and V. C. Joysey, Lack of complementation between xeroderma pigmentosum complementation groups D and H. Hum. Genet. 81, 203–210 (1989).

    CAS  Google Scholar 

  15. D. Bootsma, W. Keijzer, E. G. Jung, and E. Bohnert, Xeroderma pigmentosum complementation group XP-I withdrawn. Mutat. Res. 218, 149–151 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. P. J. Saxon, R. A. Schultz, E. J. Stanbridge, and E. C. Friedberg, Human chromosome 15 confers partial complementation of phenotypes to xeroderma pigmentosum group F cells. Am. J Hum. Genet. 44, 474–485 (1989).

    PubMed  CAS  Google Scholar 

  17. R. A. Schultz, P. J. Saxon, T. W. Glover, and E. C. Friedberg, Microcell-mediated transfer of a single human chromosome complements xeroderma pigmentosum group A fibroblasts. Proc. Natl. Acad. Sci. USA 84, 4176–4179 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. K. A. Henning, R. A. Schultz, G.S. Sekhon, and E. C. Friedberg, A gene which complements xeroderma pigmentosum group A cells maps to human chromosome 9q22.2-q34.3. Somatic Cell Mol. Genet. 16, 395–400 (1990).

    Article  CAS  Google Scholar 

  19. G. P. Kaur and R. S Athwal, Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9. Proc. Natl. Acad. Sci. USA 86, 8872–8876 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. R. A. Schultz, P. J. Saxon, T. W. Glover, E. J. Stanbridge, and E. C. Friedberg, Phenotypic complementation of xeroderma pigmentosum cells by transfer of single human chromosomes. In: “Mechanisms and Consequences of DNA Damage Processing” (E. C. Friedberg and P. C. Hanawalt, Eds.), pp. 343–348. Alan R. Liss, Inc., New York, 1988.

    Google Scholar 

  21. M. Swift, D. Morrell, E. Cromartie, A. R. Chamberlain, M. H. Skolnick, and D. T. Bishop, The incidence and gene frequency of ataxia-telangiectasia in the United States. Am. J. Hum. Genet. 39, 573–583 (1986).

    PubMed  CAS  Google Scholar 

  22. E. C. Pippard, A. J. Hall, D. J. Barker, and B. A. Bridges, Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain. Cancer Res. 48, 2929–2932 (1988).

    PubMed  CAS  Google Scholar 

  23. M. Swift, C. L. Chase, and D. Morrell, Cancer predisposition of ataxia-telangiectasia heterozygotes. Cancer Genet. Cytogenet. 46, 21–27 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. E. Boder, Ataxia-telangiectasia: An overview. In: “Ataxia-telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood” (R. A. Gatti and M. Swift, Eds.), pp. 1–63. Alan Liss Inc., New York, 1985.

    Google Scholar 

  25. B. D. Spector, A. H. Filopovich, G. S. Perry III, and J. H. Kersey, In: “Ataxia telangiectasia: A cellular and Molecular Link Between Cancer, Neuropathology, and Immune Deficiency” (R. A. Gatti and M. Swift, Eds.), pp. 103–138. J. Wiley and Sons, New York, 1982.

    Google Scholar 

  26. D. Morrell, E. Cromartie, and M. Swift, Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J. Natl. Cancer Inst. 77, 89–92 (1986).

    PubMed  CAS  Google Scholar 

  27. R. Abadir and N. Hakami, Ataxia telangiectasia with cancer. An indication for reduced radiotherapy and chemotherapy doses. Br. J. Radiol. 56, 343–345 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. M. C. Paterson and P. J. Smith, Ataxia telangiectasia: an inherited human disorder involving hypersensitivity to ionizing radiation and related DNA-damaging chemicals. Annu. Rev. Genet. 13, 291–318 (1979).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Shiloh, E. Tabor, and Y. Becker, In vitro phenotype of AT fibroblast strains: clues to the nature of the “AT DNA lesion” and the molecular defect in AT. In: “Ataxia Telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood” (R. A. Gatti and M. Swift, Eds.), pp. 111–121. Alan Liss Inc., New York, 1985.

    Google Scholar 

  30. R. A. Gatti, I. Berkel, E. Boder, G. Braedt, P. Charmley, P. Concannon, F. Ersoy, T. Foroud, N. G. J. Jaspers, K. Lange, G. M. Lathrop, M. Leppert, Y. Nakamura, P. O’Connell, M. Patterson, W. Salser, O. Sanal, J. Silver, R. S. Sparkes, E. Susi, D. E. Weeks, S. Wei, R. White, and F. Yoder, Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 336, 577–580 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. C. Lambert, R. A. Schultz, M. Smith, C. Wagner-McPherson, L. D. McDaniel, T. Donlon, E. J. Stanbridge and E. C. Friedberg, Functional complementation of ataxia-telangiectasia group D cells by microcell-mediated chromosome transfer and map** of the AT-D locus to the region 11q22–23. Proc. Natl. Acad. Sci. USA (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henning, K.A., Lambert, C., Schultz, R.A., Friedberg, E.C. (1991). Phenotypic Complementation of Cells from Human Hereditary Diseases with Defects in Cellular Responses to DNA Damage, by Single Human Chromosomes. In: Nygaard, O.F., Upton, A.C. (eds) Anticarcinogenesis and Radiation Protection 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3850-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3850-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6718-5

  • Online ISBN: 978-1-4615-3850-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation