Image Analysis by Wavelet-Type Transforms: Group Theoretic Approach

  • Chapter
Wavelet Theory and Application

Abstract

A group theoretic approach to image representation and analysis is presented. The concept of a wavelet transform is extended to incorporate different types of groups. The wavelet approach is generalized to Lie groups that satisfy conditions of compactness and commutability and to groups that are determined in a particular way by subgroups that satisfy these conditions. These conditions are fundamental to finding the invariance measure for the admissibility condition of a mother wavelet-type transform. The following special cases of interest in image representation and in biological and computer vision are discussed: 2-and 3-D rigid motion, similarity and Lorentzian groups, and 2-D projective groups obtained from 3-D camera rotation.

This research was supported by U.S.-Israel Binational Science Foundation grant 8800320, by the Franz Ollendorff Center of the Department of Electrical Engineering, and by the Fund for Promotion of Research at the Technion. J. Segman is a VATAT (Israel National Committee for Planning and Budgeting Universities) Fellow at the Technion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Grossmann and J. Morlet, “Decomposition of Hardy functions into square integrable wavelets of constant shape,” SIAM J. Appl. Math., vol. 15, 1984, pp. 723–736.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Kovacevic, Filter Banks and Wavelets: Extensions and Applications, Ph. D dissertation, Center for Telecommunications Research, Department of Electrical Engineering, Colombia University, New York, 1992.

    Google Scholar 

  3. D. Marr and S. Ullman, “Directional selectivity and its use in early visual Processing,” Proc. Roy. Soc. London Sen B., vol. 211, 1981, pp. 151–180.

    Article  Google Scholar 

  4. E.C. Hildreth, The Measurement of Visual Motion, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA 1983.

    Google Scholar 

  5. H. Greenspan, M. Porat, and Y.Y. Zeevi, “Image analysis in a position-orientation space,” IEEE, Trans. Patt. Anal. Mach. Intell., to appear.

    Google Scholar 

  6. T. Caelli, W. C. Hoffman, and H. Lindman, “Subjective Lorentz transformation and the perception of motion,” J. Opt. Soc. Am., vol. 68, 1978, pp. 402–411.

    Article  Google Scholar 

  7. K. Kanatani, Group-Theoretical Methods in Image Understanding, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  8. M.K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Informat. Theory, vol. II-8, 1962, pp. 179–187.

    MATH  Google Scholar 

  9. EA. Sadjadi and E.L. Hall, “Three-dimensional moment invariants,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 2, 1980, pp. 127–136.

    Article  MATH  Google Scholar 

  10. G. Salmon, Lessons Introductory to Modern Higher Algebra, Dodges, Foster, Dublin, 1876.

    Google Scholar 

  11. J. Grace and A. Young, The Algebra of Invariants, Cambridge U. Press, Cambridge, England, 1903; reprint, G.E. Stechert, New York, 1941.

    MATH  Google Scholar 

  12. J. Segman, J. Rubinstein, and Y.Y. Zeevi, The Canonical Coordinates Method for Pattern Deformation: Theoretical and Computation Aspects, EE Pub. No. 735, Technion, Israel Institute of Technology, Haifa, Israel, 1989; IEEE Trans. Patt. Anal. Mach. Intell., to appear.

    Google Scholar 

  13. J. Rubinstein, J. Segman, and Y.Y. Zeevi, “Recognition of distorted patterns by invariance kernels,” J. Patt. Recog., vol. 24, 1991, pp. 959–967.

    Article  MathSciNet  Google Scholar 

  14. C.E. Heil and D.E Walnut, “Continuous and discrete wavelet transforms,” SIAM J. Appl. Math., vol. 31, 1989, pp. 628–666.

    MathSciNet  MATH  Google Scholar 

  15. TV. Papathomas and B. Julesz, “Lie differential operators in animal and machine vision,” in From Pixels to Features, J.C. Simon, ed., Elsevier, New York, 1989.

    Google Scholar 

  16. E.L. Schwartz, “Computational anatomy and functional architecture of striate cortex: A special map** approach to perceptual coding,” Vis. Res., vol. 20, 1980, pp. 645–669.

    Article  Google Scholar 

  17. S.G. Mallat, “Multifrequency channel decompositions of images and wavelet models,” IEEE, Trans. Patt. Anal. Mach. Intell., vol. 37, 1989, pp. 2091–2110.

    Google Scholar 

  18. S.G. Mallat, “Multiresolution approximation and wavelet orthonormal bases of L2,” Trans. Amer. Math. Soc., vol. 3-15, Sept. 1989, pp. 69–87.

    MathSciNet  Google Scholar 

  19. J. Segman and Y.Y. Zeevi, Inverse, Isometry and Convolution Properties of the Integral Transform Associated with the Invariance Kernels, EE. Pub. 803, Technion-Israe/ Institute of Technology. Haifa, Israel, 1991.

    Google Scholar 

  20. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.

    Book  MATH  Google Scholar 

  21. N.Y. Vilenkin, Special Functions and the Theory of Group Representations, American Mathematical Society, Providence, RI, 1968.

    MATH  Google Scholar 

  22. W. Miller, Jr., Symmetry Groups and Their Application, Academic Press, New York, 1972.

    Google Scholar 

  23. A. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

    Google Scholar 

  24. W. Miller, Jr., Symmetry and Separation of Variables, Addison-Wesley, Reading, MA, 1977.

    MATH  Google Scholar 

  25. E. Wigner, Group Theory and Its Application to the Quantum of Atomic Spectra, Academic Press, New York, 1959.

    MATH  Google Scholar 

  26. J.D. Talman, Special Functions: A Group Theoretic Approach, W.A. Benjamin, New York, 1968.

    MATH  Google Scholar 

  27. J. Segman and Y.Y. Zeevi, “Approximating images deformed by the rotation projective group,” to appear.

    Google Scholar 

  28. G.L. Turin, “An introduction to matched filters,” IRE Trans. Informat. Theory, vol. IT-6, 1960, pp. 311–329.

    Article  MathSciNet  Google Scholar 

  29. D.A. Pintsov, “Invariant pattern recognition, symmetry, and radon transform,” J. Opt. Soc. Am. A., vol. 6, 1989, pp. 1544–1554.

    Article  MathSciNet  Google Scholar 

  30. J. Segman, “Fourier cross-correlation and invariance transformations for an optimal recognition of functions deformed by affine groups,” J. Opt. Soc. Am. A, vol. 9, 1992, pp. 895–902.

    Article  MathSciNet  Google Scholar 

  31. I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. Pure Appl. Math., vol. 41, 1988, pp. 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  32. Y.Y. Zeevi and I. Gertner, “The finite Zak transform: An efficient tool for image representation and analysis,” J. Vis. Commun. Image Rep., vol. 3, 1992, pp. 13–23.

    Article  Google Scholar 

  33. M. Zibulski and Y.Y. Zeevi, Over Sampling in the Gabor Scheme, EE Pub. 801, Technion-Israel Institute of Technology, Haifa, Israel, 1991.

    Google Scholar 

  34. W. Schempp, “Radar ambiguity functions the Heisenberg group, and holomorphic theta series,” Proc. Amer. Math. Soc., vol. 92, 1984, pp. 103–110.

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Schempp, Harmonic Analysis on the Heisenberg Nilpotent Lie Group with Applications to Signal Theory, Pitman Research Notes in Mathematical Sciences 147, Longman Scientific and Technical, Harlow, Essex, U.K. 1986.

    MATH  Google Scholar 

  36. E.G. Kaluins and W. Miller, Jr., A Note on Group Contractions and Radar Ambiguity Functions, IMA Preprints Series 682, University of Minnesota, Minneapolis, MN, 1990.

    Google Scholar 

  37. I. Gertner and R. Talimieri, “The group theoretic approach to image representation, J. Vis. Commun. Image Rep., vol. 1, 1990, pp. 67–82.

    Article  Google Scholar 

  38. J. Segman and W. Schempp, “Two ways to incorporate scale in the Heisenberg group with an intertwining operator,” J. Math. Imag. Vis., this issue.

    Google Scholar 

  39. J.E. Campbell, Introductory Treatise on Lie’s Theory of Finite Continuous Transformation Groups, Chelsea, New York, 1966.

    MATH  Google Scholar 

  40. A.A. Sagle and R.E. Walde, Introduction to Lie Groups and Lie Algebra, Academic Press, New York, 1973.

    Google Scholar 

  41. F. John, Partial Differential Equations, Springer-Verlag, New York, 1982.

    Google Scholar 

  42. M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wesley, Reading, MA, 1962.

    MATH  Google Scholar 

  43. Y. Meyer, Principle d’incertitude, bases Hilbertiennes et algèbres d’opérateurs, Séminaire Bourbaki, 1985–1986.

    Google Scholar 

  44. I.H. Sneddon, The Use of Integral Transform, McGraw-Hill, New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Segman, J., Zeevi, Y.Y. (1993). Image Analysis by Wavelet-Type Transforms: Group Theoretic Approach. In: Laine, A. (eds) Wavelet Theory and Application. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3260-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3260-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6434-4

  • Online ISBN: 978-1-4615-3260-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation