The Structure, Morphology and Layer Rigidity of Clay Intercalation Compounds

  • Chapter
Chemical Physics of Intercalation II

Part of the book series: NATO ASI Series ((NSSB,volume 305))

Abstract

Intercalation compounds generally consist of porous host structures which can ingest a variety of guest species into the pore spaces with little or no distortion of the host structure itself. 1–3 The porous regions within the host may exhibit full three dimensional connectivity as in zeolites4 or alkali tungsten bronzes5, completely constrained one dimensional character as in polyacetylene6 or partially constrained two dimensional regions as in graphite intercalation compounds,7 intercalated layer dichalcogenides,8 and clay intercalation compounds. These latter solids are members of a large class of materials, the layered intercalation compounds, which has been heavily investigated during the past decade. This class of intercalation compound has been interesting primarily because it exhibits not only unusual physical properties which may be of technological importance but also because it serves as an arena in which to study novel physical phenomena in reduced, i.e. 2, dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.A. Solin and H. Zabel, The physics of ternary graphite intercalation compounds, Adv. Phys. 37:87 (1988).

    Article  ADS  Google Scholar 

  2. S.A. Solin, The nature and structural properties of graphite intercalation compounds Adv. Chem. Phys. 49:455 (1985).

    Article  Google Scholar 

  3. S.A. Solin, Alumino-silicate clays and clay intercalation compounds, in: “Intercalation in Layered Materials,” M.S. Dresselhaus, ed. Plenum, New York (1986), p. 145.

    Google Scholar 

  4. D.W. Breck, “Zeolite Molecular Sieves. Structure, Chemistry and Use,” Wiley Interscience, New York (1974).

    Google Scholar 

  5. EJ. Flynn, S.A. Solin and H.R. Shanks, Raman active soft modes and phase transitions in sodium tungsten bronzes, Solid State Commun. 25:743 (1978), and references therein.

    Article  ADS  Google Scholar 

  6. D. Djurado, J.E. fischer, P.A. Heiney, J. Ma, N. Coustel and P. Bernier, Staging in potassium doped polyacetylene: in situ X-ray diffraction, Synthetic Metals 34:683 (1989).

    Article  Google Scholar 

  7. See refs. 1 and 2 and references therein.

    Google Scholar 

  8. W.Y. Liang, Electronic properties of transition metal dichalcogenides and their intercalation complexes, in: “Intercalation in Layered Materials,” M.S. Dresselhaus, ed. Plenum, New York (1986), p.31.

    Google Scholar 

  9. R.E. Grimm, “Clay Mineralogy,” McGraw Hill, New York (1968).

    Google Scholar 

  10. G.W. Brindly and G. Brown, eds., “Crystal Structures of Clay Minerals and their Identification,” Minerological Society, London (1980).

    Google Scholar 

  11. U.V.A. Drits and C. Tchoubar, “X-Ray Diffraction by Disordered Lamellar Structures,” Springer-Verlag, Berlin (1990).

    Book  Google Scholar 

  12. T. J. Pinnavaia, Intercalated Clay Catalysts, Science 220:365 (1983).

    Article  ADS  Google Scholar 

  13. S.N. Hoda and G.H. Beal, Alkaline earth mica glass-ceramics, Adv. in Ceramics 4:287 (1982).

    Google Scholar 

  14. S.W. Bailey, Structural studies of clay minerals during 1981–1985, in “Proceedings of the International Clay Conference, Denver, 1985,” L.g. Schultz, H. van Olphen and F.A. Mumpton, eds., Clay Minerals Society, Bloomington (1987).

    Google Scholar 

  15. M. Lipsicas, R.H. Raythatha, T.J. Pinnavaia, I.D. Johnson, R.F. Geise, P.M. Costanzo, and J.L. Robert, Silicon and aluminum site distributions in 2:1 layer silicate clays, Nature 309:604 (1984).

    Article  ADS  Google Scholar 

  16. S.W. Baily, Cation ordering and psuedosymmetry in layer silicates, Am. Minerology 60:175 (1975).

    Google Scholar 

  17. C. de la Calle and H. Suquet, Vermiculite, Rev. in Minerology 19:455 (1988).

    Google Scholar 

  18. B. Velde, “Clays and Clay Minerals in Natural and Synthetic Systems,” Elsevier, Amsterdam (1977).

    Google Scholar 

  19. R.M. Hazen and D.R. Wones, The effect of cation substitutions on the physical properties of trioctahedral micas, Am. Mineral. 57:103 (1972).

    Google Scholar 

  20. D.M.C. MacEwan, Interlamellar reactions of clays and other substances, Clays and Clay Minerals 9:431 (1960).

    Article  ADS  Google Scholar 

  21. G.W. Brindley and M.E. Harward, Swelling properties of synthetic smectites in relation to lattice substitutions, in “Clays and Clay Minerals, Proc. 13th Natl. Conf., Mfadison, Wisconsin, 1964,” W.F. Bradley and S.W. Bailey, eds., Pergamon Press, New York (1965).

    Google Scholar 

  22. N. Wada, D.R. Hines and S.P. Ahrenkiel, X-ray diffraction studies of hydration transitions in Na vermiculite, Phys. Rev. B41:12895 (1990).

    ADS  Google Scholar 

  23. W. Shockley, “Electrons and Holes in Semiconductors,” Van Nostrand, New York (1950).

    Google Scholar 

  24. B.R. York, S.A. Solin, N. Wada, R. Raythatha, I.D. Johnson and T.J. Pinnavaia, Substrate rigidity effects in mixed layered solids, Solid State Commun., 54:475 (1985).

    Article  ADS  Google Scholar 

  25. H.P. Klug and L.E. Alexander, “X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials,” Wiley, New York (1974).

    Google Scholar 

  26. A. Guinier, “X-Ray Diffraction,” Freeman, San Francisco (1963).

    Google Scholar 

  27. R.W.G. Wycoff, “Crystal Structures, Vol. I,” Oxford University Press, London (1962), p26.

    Google Scholar 

  28. C. de la Calle, H. Suquet and C.H. Pons, Layer stacking order in a 14.30 Å Mg vermiculite, Clays and Clay Minerals, in press.

    Google Scholar 

  29. J.F. Alcover and L. Gatineau, Structure del l’espace interlamellaire de la vermiculite Mg bicouche, Clay Minerals 15:25 (1980).

    Article  Google Scholar 

  30. H. Kim, J. Wei, S. Lee, P. Zhou, T.J. Pinnavaia, S.D. Mahanti and S.A. Solin, Layer rigidity and collective effects in pillared lamellar solids, Phys.Rev. Lett. 60:2168 (1988).

    Article  ADS  Google Scholar 

  31. S. Lee and S.A. Solin, X-Ray Study of the intercalant distribution in mixed alkyl ammonium pillared clay, Phys. Rev. 43:2012 (1991).

    Google Scholar 

  32. S.B. Hendricks and E. Teller, X-ray interference in partially ordered layer lattices, J. Chem. Phys. 10:147 (1942).

    Article  ADS  Google Scholar 

  33. D.M.C. MacEwan, Fourier transform method s for studying X-ray scattering from lamellar systems. I. A direct method for analyzing interstratified mixtures, Kolloidzeitschrift 149:96 (1956).

    Article  Google Scholar 

  34. S.A. Solin, Novel properties of inercalated layered solids: from graphite to sheet silicates, J. Molec. Catalysis 27:293 (1984).

    Article  Google Scholar 

  35. See ref. 3 and references therein.

    Google Scholar 

  36. S. Lee, H. Miyazaki, S.D. Mahanti and S.A. Solin, Composition-driven c-axis expansion of intercalated layered solids: Id non-Vegard’s-law behavior in a 2d solid solution, Phys. Rev. Lett. 62:3066 (1989).

    Article  ADS  Google Scholar 

  37. S.A. Solin, H. Miyazaki, S. Lee and S.D. Mahanti, Static relaxations of puckering distortions in intercalated layered solids, J. Non-Cryst. Solids 131:1213 (1991).

    Article  ADS  Google Scholar 

  38. M.F. Thorpe, Layer rigidity and spacing in intercalation compounds, Phys. Rev. B30:10370 (1989).

    ADS  Google Scholar 

  39. L. Vegard and H. Dale, Unterschungen ueber mischkristalle und legierungen, Zeits. Dristallogr. 67:148 (1928).

    Google Scholar 

  40. J.R. Dann, D.C. Dann and R.R. Haering, Elastic energy and staging in intercalation compounds, Solid State Commun. 42:179 (1982).

    Article  ADS  Google Scholar 

  41. J.E. Fischer and H.J. Kim, Elastic effects in intercalation compounds: comparison of lithium in graphite and TiS2, Phys. Rev. B35:3295 (1987).

    ADS  Google Scholar 

  42. S.A. Safran, Stage ordering in intercalation compounds, in “Solid State Physics, Vol. 40,” D. Turnbull and H. Ehrenreich, eds., Academic Press, New York (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Solin, S.A. (1993). The Structure, Morphology and Layer Rigidity of Clay Intercalation Compounds. In: Bernier, P., Fischer, J.E., Roth, S., Solin, S.A. (eds) Chemical Physics of Intercalation II. NATO ASI Series, vol 305. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2850-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2850-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6234-0

  • Online ISBN: 978-1-4615-2850-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation