Cell Cycle-Related Protein Kinases and T Cell Death

  • Chapter
Glycoimmunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 376))

  • 111 Accesses

Abstract

Programmed cell death (PCD), or apoptosis, involves the activation of a specific suicide program within a cell. PCD is responsible for such diverse activities as the elimination of cells during normal embryological development and determination of the immune receptor repertoire (1–9). Even though PCD was first experimentally defined over twenty years ago, very little is known about the molecular events involved in this process. Emerging data indicate that there are multiple ways by which apoptosis can be triggered in various cell types. It is not yet known whether these triggers share a common pathway, or multiple pathways that share one or more components. Several genes have been cloned from C. elegans that are clearly involved in PCD during development (ced genes), but many of their functions have been inferred by analysis of the predicted protein structure and by genetic disruptions (8). Recent work has revealed the function of at least two ced genes. The ced-3 gene is the C. elegans homologue of the mammalian interleukin-1β-converting enzyme (ICE), and encodes a cysteine protease (10). ced-9 encodes the C. elegans homologue of the bcl-2 gene product (11). From these studies it is apparent that certain aspects of PCD have been well conserved evolutionarily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Glucksman, A. Cell deaths in normal vertebrate ontogeny. Biol Rev, 26: 59–86, 1951.

    Article  Google Scholar 

  2. Kerr, J.F.R., Wylie, A.H., and Currie, A.R. Apoptosis: Abasic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26: 239–257, 1972.

    Article  PubMed  CAS  Google Scholar 

  3. Wylie, A.H., Kerr, J.F.R., and Currie, A.R. Cell Death: The significance of apoptosis. Int Rev Cytol, 68: 251–305,1981.

    Article  Google Scholar 

  4. Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S-I., Sameshima, M., Hase, A., Seto, Y., and Nagata, S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell, 66: 233–243, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Raff, M.C. Social controls on cell survival and cell death. Nature, 356: 397–400, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Fairbairn, L.J., Cowling, G.J., Reipert, B.M., and Dexter, T.M. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell, 74:823–832, 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Williams, G.T. and Smith, C.A. Molecular regulation of apoptosis: Genetic controls on cell death. Cell, 74: 777–779, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Ellis, R.E., Yuan, J., and Horvitz, H.R. Mechanisms and functions of cell death. In: Annual Review of Cell Biology, pp. 663–698, Annual Reviews Inc. 1991.

    Google Scholar 

  9. Schwartz, L.M. and Osborne, B.A. Programmed cell death, apoptosis and killer genes. Immunol Today, 14: 582–590, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell, 75: 641–652, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Hengartner, M.O. and Horvitz, H.R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell, 76: 665–676, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Cohen, J.J. Programmed cell death in the immune system. Adv Immunol, 50: 55–85, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Ashwell, J.D., Berger, N.A., Cidlowski, J.A., Lane, D.P., and Korsmeyer, S.J. Coming to terms with death: apoptosis in cancer and immune development. Curr Biol, 15: 147–151, 1994.

    CAS  Google Scholar 

  14. McConkey, D.J., Jondal, M., and Orrenius, S. Cellular signaling in thymocyte apoptosis. Semin Immunol, 4: 371–377, 1992.

    PubMed  CAS  Google Scholar 

  15. Oppenheim, R.W. Cell death during development of the nervous system. Annu Rev Neurosci, 14:453–501, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Hamburger, V. and Oppenheim, R.W. Naturally occurring neuronal death in vertebrates. Neurosci Comm, 1: 39–55, 1982.

    Google Scholar 

  17. Clarke, A.R., Purdie, C.A., Harrison, D.J., Morris, R.G., Bird, C.C., Hooper, M.L., and Wyllie, A.H. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 362: 849–852, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Krammer, P.H., Behrmann, I., Daniel, P., Dhein, J., and Debatin, K-M. Regulation of apoptosis in the immune system. Curr Biol, 6: 279–289, 1994.

    CAS  Google Scholar 

  19. Stadler, T., Hahn, S., and Erb, P. Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J Immunol, 152: 1127–1133, 1994.

    Google Scholar 

  20. Trauth, B.C., Klas, C., Peters, A.M., Matzku, S., Moller, P., Falk, W., Debatin, K-M., and Krammer, P.H. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science, 245: 301–305, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Suda, T., Takahashi, T., Golstein, P., and Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell, 75: 1169–1178, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Rabizadeh, S., Oh, J., Zhong, L-T., Yang, J., Bitler, C.M., Butcher, L.L., and Bredesen, D.E. Induction of apoptosis by the low-affinity NGF receptor. Science, 261: 345–348, 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Tartaglia, L.A., Ayres, T.M., Wong, G.H.W., and Goeddel, D.V. A novel domain within the 55 kDa TNF receptor signal cell death. Cell, 74: 845–853, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Oberhammer, F.A., Hochegger, K., Froschl, G., Tiefenbacher, R., and Pavelka, M. Chromatin condensation during apoptosis is accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase. J Cell Biol, 126: 827–837, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Lazebnik, Y.A., Cole, S., Cooke, CA., Nelson, W.G., and Earnshaw, W.C. Nuclear events of apoptosis in vitro in cell-free extracts: a model system for analysis of the active phase of apoptosis. J Cell Biol, 123: 7–22, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Shi, L., Nishioka, W.K., Th’ng, J., Bradbury, E.M., Litchfield, D.W., and Greenberg, A.H. Premature p34cdc2 activation required for apoptosis. Science, 263: 1143–1145, 1994.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, Z.-G., Smith, S.W., McLaughlin, K.A., Schwartz, L.M., and Osborne, B.A. Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature, 367: 281–284, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Woronicz, J.D., Calnan, B., Ngo, V., and Winoto, A. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature, 367: 277–281, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Askew, D.S., Ashmun, R.A., Simmons, B.C., and Cleveland, J.L. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene, 6: 1915–1922, 1991.

    PubMed  CAS  Google Scholar 

  30. Evan, G.I., Wyllie, A.H., Gilbert, C.S., Littlewood, T.D., Land, H., Brooks, M., Waters, CM., Penn, L.Z., and Hancock, D.C. Induction of apoptosis in fibroblasts by c-myc protein. Cell, 69: 119–128, 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Sentman, C.L., Shutter, J.R., Hockenberry, D., Kanagawa, O., and Korsmeyer, S.J. bcl-2 Inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell, 67: 879–888, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Wagner, A.J., Small, M.B., and Hay, N. Myc-mediated apoptosis is blocked by ectopic expression of Bcl-2. Mol Cell Biol, 13:2432–2440, 1993.

    PubMed  CAS  Google Scholar 

  33. Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A., and Yuan, J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-. Cell, 75: 653–660, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell, 78: 739–750, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Gagliardini, V., Fernandez, P.A., Lee, R.K.K., Drexler, H.C.A., Rotello, R., Fishman, M., and Yuan, J. Prevention of vertebrate neuronal death by the crmA gene. Science, 263: 826–828, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Bakhshi, A., Jensen, J.P., Goldman, P., Wright, J.J., McBride, O.W., Epstein, A.L., and Korsmeyer, S.J. Cloning the chromosomal breakpoint of t(14:18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell, 41: 899–906, 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Cleary, M.L. and Sklar, J. Nucleotide sequence of a t(14:18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci,USA, 82: 7439–7443, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., and Croce, C.M. The t(14:18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science, 229: 1390–1393, 1985.

    Article  PubMed  CAS  Google Scholar 

  39. Hockenberry, D., Nunez, G., Milliman, C., Schreiber, R.D., and Korsmeyer, S.J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 348: 334–336, 1990.

    Article  Google Scholar 

  40. Strasser, A., Harris, A.W., and Cory, S. bcl-2 Transgene inhibits T cell death and perturbs thymic self-censorship. Cell, 67: 889–899, 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Reed, J.C. Bcl-2 and the regulation of programmed cell death. J Cell Biol, 124: 1–6, 1994.

    Article  Google Scholar 

  42. Hockenberry, D.M., Oltvai, Z.N., Milliman, C.L., and Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 75: 241–251, 1993.

    Article  Google Scholar 

  43. Oltvai, Z.N., Milliman, C.L., and Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74: 609–619, 1993.

    Article  PubMed  CAS  Google Scholar 

  44. Boise, L.H., Gonzalez-Garcia, M., Postema, C.E., Ding, L., Lindsten, T., Turka, L.A., Mao, X., Nunez, G., and Thompson, C.B. bcl-x, a bcl-2-Related gene that functions as a dominant regulator of apoptotic cell death. Cell, 74: 597–608, 1993.

    Article  PubMed  CAS  Google Scholar 

  45. Bunnell, B.A., Heath, L.S., Adams, D.E., Lahti, J.M., and Kidd, V.J. Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle. Proc Natl Acad Sci,USA, 87: 7467–7471, 1990.

    Article  PubMed  CAS  Google Scholar 

  46. Eipers, P.G., Baraoski, B.L., Han, J., Carroll, A.J., and Kidd, V.J. Localization of the expressed human p58 protein kinase chromosomal gene to chromosome 1p36 and a highly related sequence to chromosome 15. Genomics, 11: 621–629, 1991.

    Article  PubMed  CAS  Google Scholar 

  47. Mock, B.A., Padlan, C., Kozak, C.A., and Kidd, V. The gene for mouse p58cdc2L1 (Pitslre 1) protein kinase maps near Ski on mouse chromosome 4. Mam Genome, 5: 191–192, 1994.

    Article  CAS  Google Scholar 

  48. **ang, J., Lahti, J.M., Grenet, J., Easton, J., and Kidd, V.J. Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms. J Biol Chem, 269: 15786–15794, 1994.

    PubMed  CAS  Google Scholar 

  49. Lahti, J.M., Valentine, M., **ang, J., Jones, B., Amann, J., Grenet, J., Richmond, G., Look, A.T., and Kidd, V.J. Alterations in the PITSLRE protein kinase gene complex on chromosome 1p36 in childhood neuroblastoma. Nature Gen, 7: 370–375, 1994.

    Article  CAS  Google Scholar 

  50. Meyerson, M., Enders, G.H., Wu, C-L., Su, L-K., Gorka, C., Nelson, C., Harlow, E., and Tsai, L-H. A family of human cdc2-related protein kinases. EMBO J., 11: 2909–2917, 1992.

    PubMed  CAS  Google Scholar 

  51. Li, H., Grenet, J., Valentine, M., Lahti, J.M., and Kidd, V.J. Structure and expression of the chicken PITSLRE protein kinase gene and mRNAs. Gene, (in press)

    Google Scholar 

  52. Rosenberg, C.L., Kim, H.G., Shows, T.B., Kronenberg, H.M., and Arnold, A. Rearrangement and overexpression of D11S287E, a candidate oncogene on chromosome 11q13 in benign parathyroid tumors. Oncogene, 6: 449–453, 1991.

    PubMed  CAS  Google Scholar 

  53. Murray, A.W. Creative blocks: cell-cycle checkpoints and feedback controls. Nature, 359: 599–604, 1992.

    Article  PubMed  CAS  Google Scholar 

  54. Hartwell, L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell, 71: 543–546, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. **ang, J., Lahti, J.M., and Kidd, V.J. 2-Aminopurine overrides a late-telophase delay created by ectopic expression of the PITSRLEβ1 protein kinase. Biochem Biophys Res Comm, 199: 1167–1173, 1994.

    Article  PubMed  CAS  Google Scholar 

  56. Andreassen, P.R. and Margolis, R.L. 2-Aminopurine overrides multiple cell cycle checkpoints in BHK cells. Proc Natl Acad Sci,USA, 89: 2272–2276, 1992.

    Article  PubMed  CAS  Google Scholar 

  57. Lahti, J.M., **ang, J., Heath, L.S., Campana, D., and Kidd, V.J. PITSLRE protein kinase activity is associated with apoptosis. Mol Cell Biol, (in press)

    Google Scholar 

  58. Shaw, E., Mares-Guia, M., and Cohen, W. Evidence for an active-center histidine in trypsin through use of a specific reagent, 1-chloro-3-tosylamido-7-amino-2-heptanone, the chloromethyl ketone derived from N-α-tosyl-L-lysine. Biochemistry, 4: 2219–2224, 1965.

    Article  CAS  Google Scholar 

  59. Bruno, S., Del Bino, G., Lassota, P., Giaretti, W., and Darzynkiewicz, Z. Inhibitors of proteases prevent endonucleolysis accompanying apoptotic death of HL-60 leukemic cells and normal thymocytes. Leukemia, 6: 1113–1120, 1992.

    PubMed  CAS  Google Scholar 

  60. Wilson, K.P, Black, J.F., Thomson, J.A., Kim, E.E., Griffith, J.P., Navia, M.A., Murcko, M.A., Chambers, S.P., Aldape, R.A., Raybuck, S.A., and Livingston, D.J. Structure and mechanism of interleukin-1-β converting enzyme. Nature, 370: 270–275, 1994.

    Article  PubMed  CAS  Google Scholar 

  61. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A., and Nagata, S. Lymphoproliferative disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature, 356: 314–317, 1992.

    Article  PubMed  CAS  Google Scholar 

  62. Adachi, M., Watanabe-Fukunaga, R., and Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci,USA, 90: 1756–1760, 1993.

    Article  PubMed  CAS  Google Scholar 

  63. Takahashi, T., Tanaka, M., Brannan, C.I., Jenkins, N.A., Copeland, N.G., Suda, T., and Nagata, S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell, 76: 969–976, 1994.

    Article  PubMed  CAS  Google Scholar 

  64. Nagata, S. Mutations in the Fas antigen gene in lpr mice. Sem Imm, 6: 3–8, 1994.

    Article  CAS  Google Scholar 

  65. Williams, G.T. Programmed cell death: apoptosis and oncogenesis. Cell, 65: 1097–1098, 1991.

    Article  PubMed  CAS  Google Scholar 

  66. Marx, J. Cell death studies yield cancer clues. Science, 259: 760–761, 1993.

    Article  PubMed  CAS  Google Scholar 

  67. Symonds, H., Krall, L., Remington, L., Saenz-Robles, M., Lowe, S., Jacks, T., and Van Dyke, T. p53-Dependent apoptosis suppresses tumor growth and progression in vivo. Cell, 78: 703–711, 1994.

    Article  PubMed  CAS  Google Scholar 

  68. Lowe, S.W., Jacks, T., Housman, D.E., and Ruley, H.E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci,USA, 91: 2026–2030, 1994.

    Article  PubMed  CAS  Google Scholar 

  69. Lowe, S.W. and Ruley, H.E. Stabilization of the p53 tumor suppressor is inducible by adenovirus 5E1A and accompanies apoptosis. Genes & Devel, 7: 535–545, 1993.

    Article  CAS  Google Scholar 

  70. Lowe, S.W., Ruley, H.E., Jacks, T., and Housman, D.E. p53-Dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell, 74: 957–967, 1993.

    Article  PubMed  CAS  Google Scholar 

  71. Gomez-Casares, M.T., Delgado, M.D., Lerga, A., Crespo, P., Quincoces, A.F., Richard, C., and Leon, J. Down-regulation of c-myc is not obligatory for growth inhibition and differentiation of human myeloid cells. Leukemia, 7: 1824–1833, 1993.

    PubMed  CAS  Google Scholar 

  72. Lowe, S.W. and Ruley, H.E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes & Devel, 7: 535–545, 1993.

    Article  CAS  Google Scholar 

  73. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A., and Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature, 362: 847–849, 1993.

    Article  PubMed  CAS  Google Scholar 

  74. Brodeur, G.M., Green, A.A., Hayes, F.A., Williams, K.J., Williams, D.L., and Tsiatis, A.A. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res, 41: 4678–4686, 1981.

    PubMed  CAS  Google Scholar 

  75. Brodeur, G.M., Tsiatis, A.A., Williams, D.L., Luthardt, F.W., and Green, A.A. Statistical analysis of cytogenetic abnormalities in human cancer cells. Cancer Gen and Cytogenet, 7: 137–152, 1982.

    Article  CAS  Google Scholar 

  76. Gilbert, F., Feder, M., Balaban, G., Brangman, D., Lurie, D.K., Podolsky, R., Rinaldt, V., Vinikoor, N., and Weisband, J. Human neuroblastomas and abnormalities of chromosomes 1 and 17. Cancer Res, 44: 5444–5449, 1984.

    PubMed  CAS  Google Scholar 

  77. Fong, C., Dracopoli, N.C., White, P.S., Merril, P.T., Griffith, R.C., Housman, D.E., and Brodeur, G.M. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: Correlation with N-myc amplification. Proc Natl Acad Sci,USA, 86: 3753–3757, 1989.

    Article  PubMed  CAS  Google Scholar 

  78. Fong, C., White, P.S., Peterson, K., Sapienza, C., Cavenee, W.K., Kern, S.E., Vogelstein, B., Cantor, A.B., Look, A.T., and Brodeur, G.M. Loss of heterozygosity for chromosomes 1 or 14 defines subsets of advanced neuroblastomas. Cancer Res, 52: 1780–1785, 1992.

    PubMed  CAS  Google Scholar 

  79. Caron, H., van Sluis, P., van Hoeve, M., de Kraker, J., Bras, J., Slater, R., Mannens, M., Voute, P.A., Westerveld, A., and Versteeg, R. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nature Gen, 4: 187–190, 1993.

    Article  CAS  Google Scholar 

  80. Cheng, J.M., Hiemstra, J.L., Schneider, S.S., Naumova, A., Cheung, N-K.,V., Cohn, S.L., Diller, L., Sapienza, C., and Brodeur, G.M. Preferential amplification of the paternal allele of the N-myc gene in human neuroblastoma. Nature Gen, 4: 191194, 1993.

    Article  Google Scholar 

  81. Schleiermacher, G., Peter, M., Michon, J., Hugot, J-P., Vielh, P., Zucker, J-M., Magdelenat, H., Thomas, G., and Delattre, O. Two distinct deleted regions on the short arm of chromosome 1 in neuroblastoma. Genes Chrom & Cancer, JO: 275–281, 1994.

    Google Scholar 

  82. Takeda, O., Hornma, C., Maseki, N., Sakurai, M., Kanda, N., Scwab, M., Nakamura, Y., and Kaneko, Y. There may be two tumor suppressor genes on chromosome arm 1p closely associated with biologically distinct subtypes of neuroblastoma. Genes Chromo & Cancer, 10: 30–39, 1994.

    Article  Google Scholar 

  83. Look, A.T., Hayes, A., Shuster, J.J., Douglass, E.C., Castleberry, R.P., Bowman, L.C., Smith, E.I., and Brodeur, G.M. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: A pediatric oncology group study. J Clin Onc, 9: 581–591, 1991.

    CAS  Google Scholar 

  84. Brodeur, G.M., Seeger, R.C., Schwab, M., Varmus, H.E., and Bishop, J.M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science, 224: 1121–1124, 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lahti, J.M., **ang, J., Kidd, V.J. (1995). Cell Cycle-Related Protein Kinases and T Cell Death. In: Alavi, A., Axford, J.S. (eds) Glycoimmunology. Advances in Experimental Medicine and Biology, vol 376. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1885-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1885-3_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5768-1

  • Online ISBN: 978-1-4615-1885-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation