Markov Decision Processes in Finance and Dynamic Options

  • Chapter
Handbook of Markov Decision Processes

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 40))

  • 1630 Accesses

Abstract

In this paper a discrete-time Markovian model for a financial market is chosen. The fundamental theorem of asset pricing relates the existence of a martingale measure to the no-arbitrage condition. It is explained how to prove the theorem by stochastic dynamic programming via portfolio optimization. The approach singles out certain martingale measures with additional interesting properties. Furthermore, it is shown how to use dynamic programming to study the smallest initial wealth x * that allows for super-hedging a contingent claim by some dynamic portfolio. There, a joint property of the set of policies in a Markov decision model and the set of martingale measures is exploited. The approach extends to dynamic options which are introduced here and are generalizations of American options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 287.83
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 374.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 353.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Bertsekas, “Necessary and sufficient conditions for existence of an optimal portfolio”, J. Econ. Theory 8, 235–247, 1974.

    Article  Google Scholar 

  2. H. Bühlmann, F. Delbaen, P. Embrechts and A. Shiryaev, “On Esscher transforms in discrete finance models”, Astin Bulletin 28, 171–186, 1998.

    Article  Google Scholar 

  3. R.C. Dalang, A. Morton and W. Willinger, “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics and Stochastic Reports 29, 185–201, 1990.

    Google Scholar 

  4. M.H.A. Davis, “Option pricing in incomplete markets”, in: Mathematics of Derivative Securities, ed: M.A.H. Dempster, S.R. Pliska, Cambridge Univ. Press, 216–226, 1997.

    Google Scholar 

  5. F. Delbaen, and M. Yor, “Passport options”, Working paper, ETH Zürich, 1999.

    Google Scholar 

  6. E.B. Dynkin and A.A. Yushkevich, Controlled Markov Processes, Springer, Berlin, 1997.

    Google Scholar 

  7. N. El Karoui and M.C. Quenez, “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM J. Control Optim. 33, 29–66, 1995.

    Article  Google Scholar 

  8. A.G. Fakeev, “Optimal stop** rules for processes with continuous parameter”, Theory Probab. Appl. 15, 324–331, 1970.

    Article  Google Scholar 

  9. E.A. Feinberg, “Total reward criteria”, This volume, 2000.

    Google Scholar 

  10. H. Föllmer and Yu.M. Kabanov, “Optional decomposition and Lagrange multipliers”, Finance Stochast. 2, 69–81, 1998.

    Google Scholar 

  11. H. Föllmer and D. Kramkov, “Optional decompositions under constraints”, Probab. Theory Relat. Fields 109, 1–25, 1997.

    Article  Google Scholar 

  12. H. Föllmer and M. Schweizer, “Hedging of contingent claims under incomplete information”, in: Applied Stochastic Analysis, eds. M.H.A. Davis and R.J. Elliot, Gordon and Breach, London, 1990.

    Google Scholar 

  13. M. Fritelli, “The minimal entropy martingale measure and the valuation problem in incomplete markets”, Mathematical Finance. To appear.

    Google Scholar 

  14. P. Grandits, “The p-optimal martingale measure and its asymptotic relation with the minimal-entropy martingale measure”, Bernoulli 5, 225–248, 1999

    Article  Google Scholar 

  15. P. Grandits and Th. Rheinlaender “On the minimal entropy martingale measure”, Preprint, Techn. Univ. Berlin, Fb. Mathem. 1999.

    Google Scholar 

  16. N. H. Hakansson, “Optimal entrepreneurial decisions in a completely stochastic environment”, Management Science 17, 427–449, 1971.

    Article  Google Scholar 

  17. J.M. Harrison and D.M. Kreps, “Martingales and arbitrage in multiperiod securities markets”, J. Economic Theory 20, 381–408, 1979.

    Article  Google Scholar 

  18. J.M. Harrison and S.R. Pliska, “Martingales and stochastic integrals in the theory of continuous trading”, Stoch. Processes & Appl. 11, 215–260, 1981.

    Article  Google Scholar 

  19. K. Hinderer, Foundations of non-stationary dynamic programming with discrete time-parameter, Lecture Notes in Operations Research and Mathematical Systems 33 Berlin-Heidelberg-New York: Springer, 1970.

    Book  Google Scholar 

  20. A. Hordijk, Dynamic Programming and Markov Potential Theory, Amsterdam: Mathematical Centre Tracts 51, 1974.

    Google Scholar 

  21. J. Jacod and A.N. Shiryaev, “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stochast. 3, 259–273, 1998.

    Article  Google Scholar 

  22. I. Karatzas, “On the pricing of American Options”, Appl.Math. Optim. 17, 37–60, 1988.

    Article  Google Scholar 

  23. I. Karatzas and S.G. Kou, “On the pricing of contingent claims under constraints”, Ann. Appl. Probab. 6, 321–369, 1996.

    Article  Google Scholar 

  24. R. Korn and M. Schäl, “On value preserving and growth optimal portfolios”, Math. Methods Op. Res. 50, 189–218, 1999.

    Article  Google Scholar 

  25. D.O. Kramkov, “Optional decomposition of supermartingales and hedging of contingent claims in incomplete security markets”, Probab. Theory Relat. Fields 105, 459–479, 1996.

    Article  Google Scholar 

  26. H.-U. Küenle, Stochastische Spiele und Entscheidungsmodelle, Teubner-Texte zur Mathematik, 89. Teubner, Leibzig, 1986.

    Google Scholar 

  27. H. Leland, “On the existence of optimal policies under uncertainty”, J. Econ. Theory 4, 35–44, 1972.

    Article  Google Scholar 

  28. R.C. Merton, Continuous-time Finance, Blackwell, Cambridge, MA, 1990.

    Google Scholar 

  29. M. Motoczynski, “Multidimensional variance-optimal hedging in discrete time model—a general approach”, Mathematical Finance 10, 243–258, 2000.

    Article  Google Scholar 

  30. M. Motoczynski and L. Stettner, “On option pricing in the multidimensional Cox-Ross- Rubinstein model”, Applicationes Mathematicae 25, 55–72, 1998.

    Google Scholar 

  31. V. Naik and R. Uppal, “Minimum cost hedging in incomplete Markets”, Univ. of British Columbia, Working paper, 1992.

    Google Scholar 

  32. S.R. Pliska, Introduction to Mathematical Finance, Blackwell publisher, Maiden, USA, Oxford, UK, 1997.

    Google Scholar 

  33. L.C.G. Rogers, “Equivalent martingale measures and no-arbitrage”, Stochastics and Stochastic Reports 51, 41–49, 1994.

    Google Scholar 

  34. R.T. Rockafeller, Convex Analysis, Princeton Univ. Press, Princeton, N.J, 1970.

    Google Scholar 

  35. W. J. Runggaldier and A. Zaccaria, “A stochastic control approach to risk management under restricted information”, Mathematical Finance 10, 277–288, 2000.

    Article  Google Scholar 

  36. W. Schachermayer, “A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time”, Insurance: Mathematics and Economics 11, 249–257, 1992.

    Article  Google Scholar 

  37. M. Schäl, “On quadratic cost criteria for option hedging”, Math. Oper. Res. 19, 121–131, 1994.

    Article  Google Scholar 

  38. M. Schäl, “Martingale measures and hedging for discrete-time financial markets”, Math. Oper. Res. 24, 509–528, 1999.

    Article  Google Scholar 

  39. M. Schäl, “Portfolio optimization and martingale measures”, Mathematical Finance 10, 289–304, 2000.

    Article  Google Scholar 

  40. M. Schäl, “Price systems constructed by optimal dynamic portfolios”, To be published in Math. Methods Op. Res, 2000.

    Google Scholar 

  41. M. Schweizer, “Variance-optimal hedging in discrete time”, Math. Oper. Res. 20, 1–32, 1995.

    Article  Google Scholar 

  42. M. Schweizer, “Approximation pricing and the variance-optimal martingale measure”, Ann. Prob. 24, 206–236, 1996.

    Article  Google Scholar 

  43. S. E. Shreve and J. Večeř “Options on a traded account: vacation calls, vacation puts and passport options”, Finance Stochast. 4, 255–274, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schäl, M. (2002). Markov Decision Processes in Finance and Dynamic Options. In: Feinberg, E.A., Shwartz, A. (eds) Handbook of Markov Decision Processes. International Series in Operations Research & Management Science, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0805-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0805-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5248-8

  • Online ISBN: 978-1-4615-0805-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation