Lactic Acid Bacteria as Mucosal Delivery Vehicles

  • Chapter
Genetics of Lactic Acid Bacteria

Part of the book series: The Lactic Acid Bacteria ((LAAB,volume 3))

Abstract

The development of effective strategies for the delivery of vaccine antigens to the mucosal tissues has received considerable attention over the past decade (reviewed in Michalek et al., 1994; O’Hagan, 1994; Wells and Pozzi, 1997). The main advantage of this route of administration is that it has the potential to elicit local immune responses leading to the production of antigen-specific secretory immunoglobulin A (sIgA) as well as systemic immune responses. Other advantages include low cost, ease of administration and minimization of adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, M. R., and Marteau, P. (1995). On the safety of lactic acid bacteria from food. International journal of Food Microbiology 27: 263–264.

    Article  CAS  Google Scholar 

  • Aguirre, M., and Collins, M. D. (1993). Lactic acid bacteria and human clinical infection. Journal of Applied Bacteriology 75: 95–109.

    Article  CAS  Google Scholar 

  • Allan, C. H., Mendrick, P. L., and Trier, J. S. (1993). Rat intestinal M cells contain acidic endosomal-lysomal compartments and express class II major histocompatability complex determinants. Gastroenterology 104: 698–708.

    CAS  Google Scholar 

  • Alm, J. S., Swartz, J., Lilja, G., Scheynius, A., and Pershagen, G. (1999). Atopy in children of families with an anthroposophic lifestyle. Lancet 353:1485–1488.

    Article  CAS  Google Scholar 

  • Aspiras, M. B., Kazmerzak, K. M., Kolenbrander, P. E., McNab, R., Hardegen, N., and Jenkinson, H. E (2000). Expression of green fluorescent protein in Streptococcus gordonii DL1 and its use as a species-specific marker in coadhesion with Streptococcus oralis 34 in saliva-conditioned biofilms. In vitro, Applied and Environmental Microbiology 66: 4074–4083.

    Article  CAS  Google Scholar 

  • Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L., and Powrie, F. (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. Journal of Experimental Medicine 190: 995–1004.

    Article  CAS  Google Scholar 

  • Autenrieth, I. B., and Schmidt, M. A. (2000). Bacterial interplay at intestinal mucosal surfaces: Implications for vaccine development. Trends in Microbiology 8: 457–164.

    Article  CAS  Google Scholar 

  • Beninati, C., Oggioni, M. R., Boccanera, M., Spinoza, M. R., Maggi, T., Conti, S., Magliani, W., De Bernardis, F., Teti, G., Cassone, A., Pozzi, G., and Polonelli, L. (2000). Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nature Biotechnology 18: 1060–1064.

    Article  CAS  Google Scholar 

  • Bergmann, K.-C., and Waldman, R. H. (1988). Stimulation of secretory antibody following oral administration of antigen. Review of Infectious Diseases 10: 939–950.

    Article  CAS  Google Scholar 

  • Bermudez-Humaran, L. G., Langella, P., Miyoshi, A., Gruss, A., Guerra, R. T., Montes de Oca-Luna, R., and Le Loir, Y. (2002). Production of human papillomavirus type 16 E7 protein in Lactoccus lactis. Applied Environmental Microbiology 68: 917–922.

    Article  CAS  Google Scholar 

  • Bitar, D M., and Whitacre, C. C. (1988). Suppression of experimental auto-immune encephalomyelitis by the oral administration of myelin basic protein. Cell Immunology 112: 364–370.

    Article  CAS  Google Scholar 

  • Brandtzaeg, P., Backkevold, E. S., and Fardstad, I. N. (1999). Regional specialization in the mucosal immune system: What happens in the microcompartments? Immunology Today 20: 141–151.

    Article  CAS  Google Scholar 

  • Bumann, D., Hueck, C., Aebischer, T., and Meyer, T. F. (2000). Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. FEMS Immunology and Medical Microbiology 27:357–364.

    Article  CAS  Google Scholar 

  • Chamberlain, L., Wells, J. M., Robinson, K., Schofield, K., and Le Page, R. (1997). Mucosal immunization with recombinant Lactococcus lactis. In: G. Pozzi and J. M. Wells (Eds.), Gram-positive bacteria as vaccine vehicles for mucosal immunization (pp. 83–106). Berlin: Springer-Verlag.

    Google Scholar 

  • Chen, Y., Inobe, J. I., Marks, R., Gonnella, P., Kuchroo, V. K., and Welner, H. L. (1995). Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376: 177–180.

    Article  CAS  Google Scholar 

  • Chatel, J. M., Langella, P., Adel-Patient, K., Commissaire, J., Wal, J. M., and Corthier, G. (2001). Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clinical and Diagnostic Laboratory Immunology 8: 545–551

    CAS  Google Scholar 

  • Conley, M. E., and Delacroix, D. L. (1987). Intravascular and mucosal immunoglobulin A: Two separate but related systems of immune defence. Annals of Internal Medicine 106: 892.

    CAS  Google Scholar 

  • Corinti, S., Medaglini, D., Cavani, A., Rescigno, M., Pozzi, G., Ricciardi-Castaglioni, P., and Girolomoni, G. (1999). Human dendritic cells very efficiently present a heterologous antigen expressed on the surface of recombinant Gram-positive bacteria to CD4+ T lymphocytes. Journal of Immunology 163: 3029–3036.

    CAS  Google Scholar 

  • Corinti, S., Medaglini, D., Prezzi, C., Cavani, A., Pozzi, G., and Girolomoni, G. (2000). Human dendritic cells are superior to B cells at presenting a major histocompatibility complex class II-restricted heterologous antigen expressed on recombinant Streptococcus gordonii. Infection and Immunity 68: 1879–1883.

    Article  CAS  Google Scholar 

  • Corthier, G., and Renault, P. (1999). Future directions for research on biotherapeutic agents: Contribution of genetic approaches on lactic acid bacteria. In: G. W. Elmer (Ed.), Biotherapeutic agents and infectious diseases (pp. 269–304). Totowa, NJ: Humana Press Inc.

    Google Scholar 

  • Cross, M. L., Stevenson, L. M., and Gill, H. S. (2001). Anti-allergy properties of fermented foods: An important immunoregulatory mechanism of lactic acid bacteria? International Immunopharmacology 1(5): 891–901.

    Article  CAS  Google Scholar 

  • D’Andréa, A., Aste-Amezaga, M., Valiante, N. M., Ma, X., Kubin, M., and Trinchieri, G. (1993). Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. Journal of Experimental Medicine 178: 1041–1048.

    Article  Google Scholar 

  • de Vos, W. M. (1999). Gene expression systems for lactic acid bacteria. Current Opinion in Microbiology 2: 289–295.

    Article  Google Scholar 

  • Dieye, Y., Usai, S., Clier, F., Gruss, A., and Piard, J.-C. (2001). Design of a protein-targeting system for lactic acid bacteria. Applied Environmental Microbiology 183: 4157–4166.

    CAS  Google Scholar 

  • Di Fabio, S., Medaglini, D., Rush, C. M., Corrias, F, Panzini, G. L., Pace, M., Verani, P., Pozzi, G., and Titti, F (1998). Vaginal immunization of cynomolgus monkeys (Macaca fascicularis) with Streptococcus gordonii expressing HIV-1 and HPV-16 antigens. Vaccine 16: 485–192.

    Article  Google Scholar 

  • Drouault, S., Corthier, G., Ehrlich, S. D., and Renault, P. (1999). Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Applied and Environmental Microbiology 65: 4881–1886.

    CAS  Google Scholar 

  • Drouault, S., Corthier, G., Ehrlich, S. D., and Renault, P. (2000). Expression of the Staphylococcus hyicus lipase in Lactococcus lactis. Applied Environmental Microbiology 66: 588–598.

    Article  CAS  Google Scholar 

  • Drouault, S., Juste, C., Marteau, P., Renault, P, and Corthier, G. (2002). Oral treatment with Lactococcus lactis expressing Staphylococcus hyicus lipase enhances lipid digestion in pigs with induced pancreatic insufficiency. Applied Environmental Microbiology 68: 3166–3168.

    Article  CAS  Google Scholar 

  • Duchmann, R., Schmitt, E., Knolle, P., Meyer zum Buschenfelde, K. H., and Neurath, M. (1996). Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. European Journal of Immunology 26: 934–938.

    Article  CAS  Google Scholar 

  • Dupont, L., Boizet-Bonhoure, B., Coddeville, M., Auvray, F., and Ritzenthaler, P. (1995). Characterisation of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. Journal of Bacteriology 177: 586–595.

    CAS  Google Scholar 

  • Dutot, P. (1996). Evaluation des lactobacilles comme vecteurs vivants de vaccination, PhD thesis, Université Louis Pasteur, Strasbourg, France.

    Google Scholar 

  • Enouf, V, Langella, P., Commissaire, J., Cohen, J., and Corthier, G. (2001). Bovine rotavirus non-structural protein 4 (NSP4) produced by Lactococcus lactis is antigenic and immunogenic. Applied and Environmental Microbiology 67: 1423–1428.

    Article  CAS  Google Scholar 

  • Fairweather, N. F., Lyness, V A., and Maskell, D. J. (1987). Immunisation of mice against tetanus toxin with fragments of tetanus toxin synthesised in Escherichia coli. Infection and Immunity 55: 2541–2545.

    CAS  Google Scholar 

  • Finzi, G., Carnaggia, M., and Copella, C. (1993). Cathepsin E in follicle-associated epithelium of intestine and tonsils: Localization to M cells and possible role in antigen processing. Histochemistry 99: 201–211.

    Article  CAS  Google Scholar 

  • Freeman, G. J., Gribben, J. G., and Boussiotis, V A. (1993). Cloning of B7-2: A CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262: 909–911.

    Article  CAS  Google Scholar 

  • Geoffroy, M. C., Guyard, C., Quatannens, B., Pavan, S., Lange, M., and Mercenier, A. (2000). Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Applied and Environmental Microbiology 66: 383–391.

    Article  CAS  Google Scholar 

  • Gicquel, B. (1995). BCG as a vector for the construction of multivalent recombinant vaccines. Biologicals 23: 113–118.

    Article  CAS  Google Scholar 

  • Gilbert, C., Robinson, K., Le Page, R. W. F., and Wells, J. M. (2000). Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infection and Immunity 68: 3251–3260.

    Article  CAS  Google Scholar 

  • Grangette, C., Müller-Alouf, H., Goudercourt, D., Geoffroy, M.-C., Turneer, M., and Mercenier, A. (2001). Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum. Infection and Immunity 69: 1547–1553.

    Article  CAS  Google Scholar 

  • Grangette, C., Muller-Alouf, H., Geoffroy, M., Goudercourt, D., Turneer, M., and Mercenier, A. (2002). Protection against tetanus toxin after intragastric administration of two recombinant lactic acid bacteria: Impact of strain viability and in vivo persistence. Vaccine 20(27–28): 3304–3309.

    Article  CAS  Google Scholar 

  • Gruzza, M., Duval-Iflah, Y., and Ducluzeau, R. (1992). Colonization of the digestive tract of germ-free mice by genetically engineered strains of Lactococcus lactis: Study of recombinant DNA stability. Microbial Releases 1: 165–171.

    CAS  Google Scholar 

  • Gruzza, M., Fons, M., Ouriet, M. F., Dubal-Iflah, Y., and Ducluzeau, R. (1994). Study of gene transfer in vitro and in the digestive tract of gnotobiotic mice from Lactococcus lactis strains to various strains belonging to human intestinal flora. Microbial Releases 2: 183–189.

    CAS  Google Scholar 

  • Guarner, F., and Schaafsma, G. J. (1998). Probiotics. International Journal of Food Microbiology 39: 237–238.

    Article  CAS  Google Scholar 

  • Guzman, C. A., Weiss, S., and Chakraborty, T. (1997). Listeria monocytogenes—A promising vaccine carrier to evoke cellular immune responses. In: G. Pozzi and J. M. Wells (Eds.), Gram-positive bacteria as vaccine vehicles for mucosal immunisation (pp. 145–173). Berlin: Springer-Verlag.

    Google Scholar 

  • Halpern, G. M., Vruwink, K. G., Van de Water, J., Keen, C. L., and Gershwin, M. E. (1991). Influence of long-term yoghurt consumption in young adults. International Journal of Immunotherapy 7: 205–210.

    CAS  Google Scholar 

  • Hathaway, L. J., and Kraehenbuhl, J. P. (2000). The role of M cells in mucosal immunity. Cell Molecular Life Science 57: 323–332.

    Article  CAS  Google Scholar 

  • Hayday, A., and Viney, J. L. (2000). The ins and outs of body surface immunology. Science 290: 97–100.

    Article  CAS  Google Scholar 

  • Hessle, C., Hanson, L. A., and Wold, A. E. (1999). Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Clinical Experimental Immunology 116: 276–282.

    Article  CAS  Google Scholar 

  • Higgins, P. J., and Weiner, H. L. (1988). Suppression of experimental auto-immune encephalomyelitis by oral administration of myelin basic protein and its fragments. Journal of Immunology 140: 440–445.

    CAS  Google Scholar 

  • Hols, P., Slos, P., Dutot, P., Reymund, J., Chabot, P., Delplace, B., Delcour, J., and Mercenier, A. (1997). Efficient secretion of the model antigen M6–gp41E in Lactobacillus plantarum NCIMB 8826. Microbiology 143: 2733–2741.

    Article  CAS  Google Scholar 

  • Ishii, H., Kobayashi, Y., Kuroki, M., and Kodama, Y. (1988). Protection of mice from lethal infection with Aujeszky2019s disease virus by immunization with purified gVI. Journal of Genetic Virology 69: 1411–1414.

    Article  CAS  Google Scholar 

  • Iwaki, M., Okahashi, N., Takahashi, I., Kanamoto, T., Sugita-Konishi, Y., Aibara, K., and Koga, T. (1990). Oral immunization with recombinant Streptococcus lactis carrying the Streptococcus mutans surface protein antigen gene. Infection and Immunity 58: 2929–2934.

    CAS  Google Scholar 

  • James, S. P. (1997). The gastrointestinal mucosal immune system. In: M. M. Levine, G. C. Woodrow, J. B. Kaper, and G. C. Cobon (Eds.), New generation vaccines (pp. 151–171). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Jones, B. D., Ghori, N., and Falkow, S. (1994). Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer2019s patches. Journal of Experimental Medicine 180: 15–23.

    Article  CAS  Google Scholar 

  • Kantele, A., Hakkinen, M., Moldoveanu, Z., Lu, A., Savilahti, E., Alvarez, R. D., Michalek, S., and Mestecky, J. (1998). Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: Evidence for compartmentalization within the common mucosal immune system in humans. Infection and Immunity 66: 5630–5635.

    CAS  Google Scholar 

  • Kato, I., Endo-Tanaka, K., and Yokokura, T. (1998). Suppressive effects of the oral administration of Lactobacillus casei on type II collagen-induced arthritis in DBA/1 mice. Life Sciences 63(8): 635–644.

    Article  CAS  Google Scholar 

  • Klaenhammer, T. R. (1995). Genetics of intestinal lactobacilli. International Dairy Journal 5: 1019–1058.

    Article  CAS  Google Scholar 

  • Klijn, N., Weerkamp, A. H., and de Vos, W. M. (1995). Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Applied and Environmental Microbiology 61: 2771–2774.

    CAS  Google Scholar 

  • Kruisselbrink, A., Heijne Den Bak-Glashouwer, M. J., Havenitch, C. E., Thule, J. E., and Janssen, R. (2001). Recombinant Lactobacillus plantarum inhibits house dust mite-specific T-cell responses. Clinical Experimental Immunology 126: 2–8.

    Article  CAS  Google Scholar 

  • Kullen, M. J., and Klaenhammer, T. R. (2000). Genetic modification of lactobacilli and bifidobacteria. Current Issues in Molecualr Biology 2: 41–50.

    CAS  Google Scholar 

  • Krüger, C., Hu, Y., Pan, Q., Marcotte, H., Hultberg, A., Delwar, D., van Dalen, P. J., Pouwels, P. H., Leer, R. J., Kelly, C. G., van Dollenweerd, C., Ma, J. K., and Hammarström, L. (2002). In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nature Biotechnology 20: 702–706

    Article  CAS  Google Scholar 

  • Lamm, M. E. (1997). Interaction of antigens and antibodies at mucosal surfaces. Annual Review of Microbiology 57: 311–340.

    Article  Google Scholar 

  • Langella, P., and Leloir, Y. (1999). Heterologous protein secretion in Lactococcus lactis: A novel antigen delivery system. Brazilian Journal of Medical and Biological Research 32: 191–198.

    Article  CAS  Google Scholar 

  • Lee, S. F., Halperin, S. A., Wang, H., and Mac Arthur, A. (2002). Oral colonization and immune responses to Streptococcus gordonii expressing a pertussis toxin S1 fragment in mice. FEMS Microbiology Letters 208: 175–178.

    Article  CAS  Google Scholar 

  • Levine, M. M., Galen, J., Barry, E., Noriega, F, Chatfield, S., Sztein, M., Dougan, G., and Tacket, C. (1996). Attenuated Salmonella as live oral vaccines against typhoid fever and as live vectors. Journal of Biotechnology 44: 193–196.

    Article  CAS  Google Scholar 

  • Locht, C. (2000). Live bacterial vectors for intranasal delivery of protective antigens. Pharmaceutical Science and Technology Today 3: 121–128.

    Article  CAS  Google Scholar 

  • Maassen, C. B. M., Laman, J. D., Heijne den Bak-Glashouwer, M. J., Tielen, F. J., van Holten-Neelen, J. C. P. A., Hoogteijling, L., Antonissen, C., Leer, R. J., Pouwels, P. H., Boersma, W. J. A., and Shaw, D. M. (1999). Instruments for oral disease-intervention strategies: Recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 17: 2117–2128.

    Article  CAS  Google Scholar 

  • Maassen, C. B. M., van Holten-Neelen, J. C. P. A., Balk, F., den Bak-Glashouwer, M. J. F., Leer, R. J., Laman, J. D., Boersma, W. J. A., and Claassen, E. (2000). Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18: 2613–2623.

    Article  CAS  Google Scholar 

  • Madsen, K. L., Doyle, J. S., Jewell, L. D., Tavernini, M. M., and Fedorak, R. N. (1999). Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116(5): 1107–1114.

    Article  CAS  Google Scholar 

  • MacDonald, T. T. (1994). Oral tolerance. Eating your way towards immunosuppression. Current Biology 4: 178–181.

    Article  CAS  Google Scholar 

  • MacPherson, A. J., Gatto, D., Sainsbury, E., Harriman, G. R., Heingartner, H., and Zinkernagel, R. M. (2000). A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288: 2222–2226.

    Article  CAS  Google Scholar 

  • Martin, M. C., Alonso, J. C., Suarez, J. E., and Alvarez, M. A. (2000). Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Applied Environmental Microbiology 66: 2599–2604.

    Article  CAS  Google Scholar 

  • Mazanec, M. B., Kaetzel, C. S., Lamm, M. E., Fletcher, D., and Nedrud, J. G. (1992). Intracellular neutralization of virus by immunoglobulin A antibodies. Proceedings of the National Academy of Sciences, USA 89: 6901–6905.

    Article  CAS  Google Scholar 

  • McGhee, J. R., Mestecky, J., Dertzbaugh, M. T., Eldridge, J. H., Hirasawa, M., and Kiyono, H. (1992). The mucosal immune system: From fundamental concepts to vaccine developments. Vaccine 10: 75–88.

    Article  CAS  Google Scholar 

  • Medaglini, D., Ciabattini, A., Spinosa, M. R., Maggi, T., Marcotte, H., Oggioni, M. R., and Pozzi, G. (2001). Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. Vaccine 19: 1931–1939

    Article  CAS  Google Scholar 

  • Medaglini, D., Oggioni, M., and Pozzi, G. (1998). Vaginal immunisation with recombinant Gram-positive bacteria. American Journal of Reproductive Immunology 39: 199–208.

    Article  CAS  Google Scholar 

  • Medaglini, D., Pozzi, G., and King, T. P., and Fischetti, V. A. (1995). Mucosal and systemic immune responses to a recombinant protein expressed on the surface of the oral commensal bacterium Streptococcus gordonii after oral colonization. Proceedings of the National Academy of Sciences USA 92: 6868–6872.

    Article  CAS  Google Scholar 

  • Medaglini, D., Ricci, S., Maggi, T., Rush, C. M., Manganelli, R., Oggioni, M. R., and Pozzi, G. (1997a). Recombinant Gram-positive bacteria as vehicles of vaccine antigens. Biotechnology Annual Review 3: 297–312.

    Article  CAS  Google Scholar 

  • Medaglini, D., Rush, C. M., Sestini, P., and Pozzi, G. (1997b). Commensal bacteria as vectors for mucosal vaccines against sexually transmitted diseases: Vaginal colonisation with recombinant streptococci induces local and systemic antibodies in mice. Vaccine 15: 1330–1337.

    Article  CAS  Google Scholar 

  • Mercenier, A., Dutot, P., Kleinpeter, P., Aguirre, M., Paris, P., Reymund, J., and Slos, P. (1996). Development of lactic acid bacteria as live vectors for oral or local vaccines. Advances in Food Science 18: 73–77.

    CAS  Google Scholar 

  • Mercenier, A., Müller-Alouf, H., and Grangette, C. (2000). Lactic acid bacteria as live vaccines. Current Issues in Molecular Biology 2: 17–25.

    CAS  Google Scholar 

  • Mestecky, J., and McGhee, J. R. (1987). Immunoglobin A (IgA): Molecular and cellular interactions involved in IgA biosynthesis and immune response. Advances in Immunology 40: 153.

    Article  CAS  Google Scholar 

  • Michalek, S. M., Eldridge, J. H., Curtiss,  III, R., and Rosenthal, K. L. (1994). Antigen delivery systems: New approaches to mucosal immunization In: P. L. Ogra, M. D. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, and J. Bienenstock (Eds.), Handbook of mucosal immunology (pp. 373–390). San Diego: Academic Press Inc.

    Google Scholar 

  • Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J., and Neutra, M. R. (1992). Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infection and Immunity 60: 1786.

    CAS  Google Scholar 

  • Miettinen, M., Matikainen, S., Vuopio-Varkila, J., Pirhonen, J., Varkila, K., Kurimoto, M., and Julkunen, I. (1998). Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infection and Immunity 66: 6058–6062.

    CAS  Google Scholar 

  • Moore, W. E. C., and Holdeman, L. V. (1974). Human fecal flora: The normal flora of 20 Japanese-Hawaiians. Applied Microbiology 27: 961.

    CAS  Google Scholar 

  • Mowat, A. M. (1985). The role of antigen recognition and suppressor cells in mice with oral tolerance to ovalbumin. Immunology 56: 253–260.

    CAS  Google Scholar 

  • Mukamoto, M., Watanabe, I., Kobayashi, Y., Icatlo, F. C. J., Ishii, H., and Kodama, Y. (1991). Immunogenicity in Aujesky2019s disease virus structural glycoprotein gVI (gp50) in swine. Veterinary Microbiology 29: 109–121.

    Article  CAS  Google Scholar 

  • Müller-Alouf, H., Grangette, C., Goudercourt, D., Reveneau, N., and Mercenier, A. (1999). Comparative cytokine inducing pattern of lactic acid bacteria used for mucosal vaccine development. Immunology Letters 69: 33.

    Google Scholar 

  • Nagler-Anderson, C. (2000). Tolerance and immunity in the intestinal immune system. Critical Review of Immunology 20: 103–120.

    CAS  Google Scholar 

  • Nguyen, T. N., Hansson, M., Stahl, S., Bachi, T., Robert, A., Domzig, W., Binz, H., and Uhlen, M. (1993). Cell-surface display of heterologous epitopes on Staphylococcus xylosus as a potential delivery system for oral vaccination. Gene 128: 89–94.

    Article  CAS  Google Scholar 

  • Nicoletti, C. (2000). Unsolved mysteries of intestinal M cells. Gut 47: 735–739.

    Article  CAS  Google Scholar 

  • Norton, P. M., Brown, H. W. G., Wells, J. M., Macpherson, A. M., Wilson, P. W., and Le Page, R. W. F. (1996). Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunology and Medical Microbiology 14: 167–177.

    Article  CAS  Google Scholar 

  • Norton, P. M., Le Page, R. W. F, and Wells, J. M. (1995). Progress in the development of Lactococcus lactis as a recombinant mucosal vaccine delivery system. Folia Microbiologia 40: 225–230.

    Article  CAS  Google Scholar 

  • Norton, P. M., Wells, J. W., Brown, H. W. G., Macpherson, A. M., and Le Page, R. W. F. (1997). Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis expressing tetanus toxin fragment C. Vaccine 15:616–619.

    Article  CAS  Google Scholar 

  • Oggioni, M. R., Manganelli, R., Contorni, M., Tommasino, M., and Pozzi, G. (1995). Immunization of mice by oral colonization with live recombinant commensal streptococci. Vaccine 13: 775–780.

    Article  CAS  Google Scholar 

  • Oggioni, M. R., Medaglini, D., Romano, L., Peruzzi, F., Maggi, T., Lozzi, L., Bracci, L., Zazzi, M., Wiesmuller, K. H., Manca, F., Valensin, P. E., and Pozzi, G. (1999). Immunogenicity and antigenicity of the V3 domain of HIV-1 gpl20 expressed on the surface of Streptococcus gordonii. AIDS Research Human Retroviruses 15: 451–459.

    Article  CAS  Google Scholar 

  • O’Hagan, D. T. (1994). Oral immunization and the common mucosal immune system. In: D. T. O’Hagan (Ed.), Novel delivery systems for oral vaccines (pp. 1–24). Florida, USA: CRC Press, Inc.

    Google Scholar 

  • Owen, R. L., Pierce, N. F., and Cray, W. C., Jr (1988). Effects of bacterial inactivation methods, toxin production, and oral immunization on uptake of Vibrio cholerae by Peyer’s patch lymphoid follicles. In: S. Kuwahara, and N. F. Pierce (Eds.), Advances in research on cholera and related diarrheas (pp. 189–197). Tokyo: KTK Scientific Publishers.

    Google Scholar 

  • Pappo, J., and Mahlman, R. T. (1993). Follicle epithelial M cells are a source of IL-1 in Peyer’s patches. Immunology 78: 505–507.

    CAS  Google Scholar 

  • Pavan, S., Hols, P., Delcour, J., Geoffroy, M. C., Grangette, C., Klerebezem, M., and Mercenier, A. (2000). Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: A tool to study in vivo biological effects. Applied and Environmental Microbiology 66: 4427–1432.

    Article  CAS  Google Scholar 

  • Pouwels, P. H., Leer, R. J., Shaw, M., Heijne Den Bak-Glashouwer, M. J., Tielen, F. D., Smit, E., Martinez, B., Jore, J., and Conway, P. L. (1998). Lactic acid bacteria as antigen delivery vehicles for oral immunisation purposes. International Journal of Food Microbiology 41: 155–167.

    Article  CAS  Google Scholar 

  • Pouwels, P. H., Leer, R. J., and Boersma, W. J. A. (1996). The potential of Lactobacillus as a carrier for oral immunisation: Development and preliminary characterisation of vector systems for targeted delivery of antigens. Journal of Biotechnology 44: 183–192.

    Article  CAS  Google Scholar 

  • Pouwels, P. H., and Leer, R. J. (1993). Genetics of lactobacilli: plasmids and gene expression. Antonie Van Leeuwenhoek 64: 85–107.

    Article  Google Scholar 

  • Pozzi, G., and Oggioni, M. R. (1994). The human oral commensal Streptococcus gordonii as live vector for vaccines. In: A. Totolian (Ed.), Pathogenic streptococci: present and future (pp. 163–165). St Peterburg: Lancer Publications.

    Google Scholar 

  • Pozzi, G., Oggioni, M. R., and Medaglini, D. (1997). Recombinant Streptococcus gordonii as a live vehicle for vaccine antigens. In: G. Pozzi and J. M. Wells (Eds.), Gram-positive bacteria as vaccine vehicles for mucosal immunisation (pp. 35–60). Berlin: Springer-Verlag.

    Google Scholar 

  • Reid, G. (2000). Probiotic therapy and functional foods for prevention of urinary tract infections: state of the art and science. Current Infectious Diseases Reports 2: 518–522.

    Article  Google Scholar 

  • Rescigno, M., Citterio, C., Théry, M., Rittig, M., Medaglini, D., Pozzi, G., Amigorena, S., and Ricciardi-Castagnoli, P. (1998). Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proceedings of the National Academy of Sciences USA 95: 5229–5234.

    Article  CAS  Google Scholar 

  • Reveneau, N., Geoffroy, M.-C., Locht, C., Chagnaud, P., and Mercenier, A. (2002). Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine 20: 1769–1777.

    Article  CAS  Google Scholar 

  • Ribeiro, L. A., Azevedo, V, Le Loir, Y., Oliveira, S. C., Dieye, Y., Piard, J. C., Gruss, A., and Langella, P. (2002). Production and targeting of the Brucella abortus antigen L7/L2 in Lactococcus lactis: A first step towards food-grade live vaccine against brucellosis. Applied and Environmental Microbiology 68: 910–916.

    Article  CAS  Google Scholar 

  • Ricci, S., Medaglini, D., Rush C. M., Marcello, A., Peppoloni, S., Manganelli, R., Palu, G., and Pozzi, G. (2000). Immunogenicity of the B monomer of Escherichia coli heat-labile toxin expressed on the surface of Streptococcus gordonii. Infection and Immunity 68: 760–776.

    Article  CAS  Google Scholar 

  • Roberts, M., Chatfield, S. N., and Dougan, G. (1994). Salmonella as carriers of heterologous antigens. In: D. T. O’Hagan (Ed.), Novel delivery systems for oral vaccines (pp. 27–58). Florida, USA: CRC Press Inc.

    Google Scholar 

  • Robinson, K., Chamberlain, L. M., Schofield, K. M., Wells, J. M., and Le Page, R. W. F (1997). Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nature Biotechnology 15: 653–657.

    Article  CAS  Google Scholar 

  • Roos, S. (1999). Adhesion and autoaggregation of Lactobacillus reuteri and description of a new Lactobacillus species with mucus binding properties. PhD thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • Rush, C. M., Mercenier, A., and Pozzi, G. (1997). Expression of vaccine antigens in Lactobacillus. In: G. Pozzi and J. M. Wells (Eds.), Gram-positive bacteria as vaccine vehicles for mucosal immunisation (pp. 107–144). Berlin: Springer-Verlag.

    Google Scholar 

  • Sanderson, I. R., Ouellette, A. J., Carter, E. A., Walker, W. A., and Harmatz, P. R. (1993). Differential regulation of B7 mRNA in enterocytes and lymphoid cells. Immunology 79: 434–438.

    CAS  Google Scholar 

  • Shanahan, F. (2000). Therapeutic Manipulation of Gut Flora. Science 289: 1311–1312.

    Article  CAS  Google Scholar 

  • Shaw, D. M., Gaerthé, B., Leer, R. J., Van der Stap, J. G. M. M., Smittenaar, C., Heijne Den Bak-Glashouwer, M. J., Thole, J. E. R., Tielen, F. J., Pouwels, P. H., and Havenith, C. E. G. (2000). Engineering the micro-flora to vaccinate the mucosa: serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing lactobacilli. Immunology 100: 510–518.

    Article  CAS  Google Scholar 

  • Sirard, J. C., Niedergang, F, and Kraehenbuhl, J. P. (1999). Live attenuated Salmonella: A paradigm of mucosal vaccines. Immunology Review 171: 5–26.

    Article  CAS  Google Scholar 

  • Stahl, S., Samuelson, P., Hansson, M., Andreoni, C., Goetsch, L., Libon, C., Liljeqvist, S., Gunneriusson, E., Binz, H., Nguyen, T. N., and Uhlen, M. (1997). Development of non-pathogenic staphylococci as vaccine delivery vehicles. In: G. Pozzi and J. M. Wells (Eds.), Gram-positive bacteria as vaccine vehicles for mucosal immunisation (pp. 61–81). Berlin: Springer-Verlag.

    Google Scholar 

  • Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W., and Remaut, E. (2000). Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352–1355.

    Article  CAS  Google Scholar 

  • Steidler, L., Robinson, K., Chamberlain, L., Schofield, K. M, Remaut, E., Le Page, R. W. F, and Wells, J. M. (1998). Mucosal delivery of murine interkeukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infection and Immunity 66: 3183–3189.

    CAS  Google Scholar 

  • Stemmer, W. P., Crameri, A., Ha, K. D., Brennan, T. M., and Heyneker, H. L. (1995). Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164: 49–53.

    Article  CAS  Google Scholar 

  • Stoolman, L. M. (1989). Adhesion molecules controlling lymphocyte migration. Cell 56: 907.

    Article  CAS  Google Scholar 

  • Strobel, S., and Mowat, A. M. (1998). Immune responses to dietary antigens: oral tolerance. Immunology Today 19: 173–181.

    Article  CAS  Google Scholar 

  • Sutas, Y., Soppi, E., Korhonen, H., Syvaoja, E. L., Saxelin, M., Rokka, T., and Isolauri, E. (1996). Suppression of lymphocyte proliferation in vitro by bovine caseins hydrolyzed with Lactobacillus casei GG-derived enzymes. Journal of Allergy and Clinical Immunology 98: 216–224.

    Article  CAS  Google Scholar 

  • Takada, A., Shimizu, Y., and Kida, H. (1994). Protection of mice against Aujeszky’s disease virus infection by intranasal vaccination with inactivated virus. Journal of Veterinary Medical Science 56: 633–637.

    Article  CAS  Google Scholar 

  • Taylor, H. P., and Dimmock, N. J. (1985). Mechanisms of neutralization of the influenza virus by secretory IgA is different from that of monomelic IgA or IgG. Journal of Experimental Medicine 161: 198.

    Article  CAS  Google Scholar 

  • Trapp, C. L., Chang, C. C., Halpern, G. M., Keen, C. L., and Gershwin, M. E. (1993). The influence of chronic yogurt consumption on populations of young and elderly adults. International Journal of Immunotherapy 9: 53–64.

    Google Scholar 

  • Van de Water, J., Keen, C. L., and Gershwin, M. E. (1990). The influence of chronic yogurt consumption on immunity. Journal of Nutrition 129(7 Suppl): 1492S-5S.

    Google Scholar 

  • Vesa, T., Pochart, P., and Marteau, P. (2000). Pharmacokinetics of Lactobacillus plantarum NCIMB 8826. Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Alimentary Pharmacology Therapies 14: 823–828.

    Article  CAS  Google Scholar 

  • Walker, S. A., and Klaenhammer, T. R. (2001). Leaky Lactococcus cultures that externalize enzymes and antigens independently of culture lysis and secretion and export pathways. Applied Environmental Microbiology 67: 251–259.

    Article  CAS  Google Scholar 

  • Weiner, H. L., Miller, A., and Khoury, S. J. (1995). Treatment of autoimmune diseases by oral tolerance to autoantigens. Advanced Experimental Medical Biology 371B: 1217–1223.

    CAS  Google Scholar 

  • Wells, J. M., Norton, P. M., and Le Page, R. W. F. (1995). Progress in the development of mucosal vaccines based on Lactococcus lactis. International Dairy Journal 5: 1071–1079.

    Article  CAS  Google Scholar 

  • Wells, J. M., and Pozzi, G. (1997). An overview of Gram-positive bacteria as vaccine vehicles for musocal immunization. In: G. Pozzi and J. M. Wells (Eds.), Gram-positive bacteria as vaccine vehicles for mucosal immunisation (pp. 1–8). Berlin: Springer-Verlag.

    Google Scholar 

  • Wells, J. M., Robinson, K., Chamberlain, L. M., Schofield, K. M., and Le Page, R. W. F. (1996). Lactic acid bacteria as vaccine delivery vehicles. Anton van Leeuwenhoek 70: 317–330.

    Article  CAS  Google Scholar 

  • Wells, J. M., and Schofield, K. M. (1996). Cloning and expression vectors for lactococci. In: T. F. Bozoglu and R. Bibek (Eds.), Lactic acid bacteria: Current advances in metabolism, genetics, and applications (pp. 37–62). NATO ASI Series Vol H 98. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Wells, J. M., Wilson, P. W., and Le Page, R. W (1993a). Improved cloning vectors and transformation procedure for Lactococcus. Journal of Applied Bacteriology 74: 629–636.

    Article  CAS  Google Scholar 

  • Wells, J. M., Wilson, P. W., Norton, P. M., Gasson, M. J., and Le Page, R. W. F. (1993b). Lactococcus lactis: High-level expression of tetanus toxin fragment C and protection against lethal challenge. Molecular Microbiology 8: 1155–1162.

    Article  CAS  Google Scholar 

  • Wells, J. M., Wilson, P. W., Norton, P. M., and Le Page, R. W. (1993c). A model system for the investigation of heterologous protein secretion pathways in Lactococcus lactis. Applied Environmental Microbiology 59: 3954–3959.

    CAS  Google Scholar 

  • Winner, L., Mack, J., Weltzin, R. A., Mekalanos, J. J., Kraehenbuhl, J. P., and Neutra, M. R. (1991). New model for analysis of mucosal immunity: Intestinal secretion of monoclonal immunoglobulin A from hybridoma tumors protects against Vibrio cholerae infection. Infection and Immunity 59: 977.

    CAS  Google Scholar 

  • Wold, A. E., Dahlgren, U. I. H., Hanson, L. A., Mattsby-Baltzer, I., and Midvetdt, T. (1989). Difference between bacterial and food antigens in mucosal immunogenicity. Infection and Immunity 57: 2666–2673.

    CAS  Google Scholar 

  • Yasui, H., Shida, K., Matsuzaki, T., and Yokokura, T (1999). Immunomodulatory function of lactic acid bacteria. Antonie Van Leeuwenhoek 76: 383–389.

    Article  CAS  Google Scholar 

  • Yoshida, T., Hachimura, S., and Kaminogawa, S. (1997). The oral administration of low-dose antigen induces activation followed by tolerization, while high-dose antigen induces tolerance without activation. Clinical Immunological Immunopathology 82: 207–215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wells, J.M., Mercenier, A. (2003). Lactic Acid Bacteria as Mucosal Delivery Vehicles. In: Wood, B.J.B., Warner, P.J. (eds) Genetics of Lactic Acid Bacteria. The Lactic Acid Bacteria, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0191-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0191-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4959-4

  • Online ISBN: 978-1-4615-0191-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation