Cancer Cell Respiration: Hypoxia and pH in Solid Tumors

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery

Abstract

Tumor cells require large amounts of oxygen and nutrients for rapid proliferation. Blood vessel growth is not fast enough to meet these requirements, however, resulting in low oxygen and glucose concentrations in tumor tissues. Tumor hypoxia is closely related to increased levels of glycolysis and in turn accumulation of lactate in the tissue. Therefore, tumor tissue pH decreases in the hypoxic tumors. Gene expression profiles in tumor tissues change in hypoxic environments in order to adapt to the acidic conditions. These genes are involved in angiogenesis, cell growth, apoptosis, and glycolysis. Gene induction is primarily controlled at the level of transcription by hypoxia-inducible factor-1 (HIF-1). HIF-1α is stabilized under hypoxic conditions and forms a heterodimer with HIF-1β. HIF-1 then binds to a hypoxia response element (HRE) within a hypoxia-specific promoter for gene expression. Tumor-specific drug and gene delivery systems have been developed using hypoxia-inducible regulation systems. In this chapter, strategies for pH-specific drug delivery and gene therapy in hypoxic tumors are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown JM (2000) Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6(4):157–162

    CAS  PubMed  Google Scholar 

  2. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465

    CAS  PubMed  Google Scholar 

  3. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS (2000) Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 60(15):4010–4015

    CAS  PubMed  Google Scholar 

  4. Ziemer LS, Lee WM, Vinogradov SA, Sehgal C, Wilson DF (2005) Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J Appl Physiol 98(4):1503–1510

    CAS  PubMed  Google Scholar 

  5. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    CAS  PubMed  Google Scholar 

  6. Chien CW, Lin SC, Lai YY, Lin BW, Lin SC, Lee JC, Tsai SJ (2008) Regulation of cd151 by hypoxia controls cell adhesion and metastasis in colorectal cancer. Clin Cancer Res 14(24):8043–8051

    CAS  PubMed  Google Scholar 

  7. Dvorak HF, Sioussat TM, Brown LF, Berse B, Nagy JA, Sotrel A, Manseau EJ, Van de Water L, Senger DR (1991) Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J Exp Med 174(5):1275–1278

    CAS  PubMed  Google Scholar 

  8. Giordano FJ, Johnson RS (2001) Angiogenesis: the role of the microenvironment in flip** the switch. Curr Opin Genet Dev 11(1):35–40

    CAS  PubMed  Google Scholar 

  9. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416

    CAS  PubMed  Google Scholar 

  10. McKeage MJ, Baguley BC (2010) Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 116(8):1859–1871

    CAS  PubMed  Google Scholar 

  11. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (mdr1) gene. Cancer Res 62(12):3387–3394

    CAS  PubMed  Google Scholar 

  12. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90(9):4304–4308

    CAS  PubMed  Google Scholar 

  13. Kress S, Stein A, Maurer P, Weber B, Reichert J, Buchmann A, Huppert P, Schwarz M (1998) Expression of hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol 124(6):315–320

    CAS  PubMed  Google Scholar 

  14. Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93(7):664–673

    CAS  PubMed  Google Scholar 

  15. Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS (1994) The glucose-regulated proteins (grp78 and grp94): functions, gene regulation, and applications. Crt Rev Eukaryot Gene Expr 4(1):1–18

    Google Scholar 

  16. Koong AC, Auger EA, Chen EY, Giaccia AJ (1994) The regulation of grp78 and messenger rna levels by hypoxia is modulated by protein kinase c activators and inhibitors. Radiat Res 138(1 Suppl):S60–S63

    CAS  PubMed  Google Scholar 

  17. Song MS, Park YK, Lee JH, Park K (2001) Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase c-epsilon/erk/ap-1 signaling cascade. Cancer Res 61(22):8322–8330

    CAS  PubMed  Google Scholar 

  18. Gazit G, Kane SE, Nichols P, Lee AS (1995) Use of the stress-inducible grp78/bip promoter in targeting high level gene expression in fibrosarcoma in vivo. Cancer Res 55(8):1660–1663

    CAS  PubMed  Google Scholar 

  19. Acker T, Plate KH (2002) A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J Mol Med 80(9):562–575

    CAS  PubMed  Google Scholar 

  20. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ (1997) Targeting gene therapy to cancer: a review. Oncol Res 9(6–7):313–325

    CAS  PubMed  Google Scholar 

  21. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271(4 Pt 1):C1172–C1180

    CAS  PubMed  Google Scholar 

  22. Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273(19):11619–11624

    CAS  PubMed  Google Scholar 

  23. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95(20):11715–11720

    CAS  PubMed  Google Scholar 

  24. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ros but not oxidative phosphorylation. Cell Metab 1(6):409–414

    CAS  PubMed  Google Scholar 

  25. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271(30):17771–17778

    CAS  PubMed  Google Scholar 

  26. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (hif-1). Mol Pharmacol 70(5):1469–1480

    CAS  PubMed  Google Scholar 

  27. Shibata T, Akiyama N, Noda M, Sasai K, Hiraoka M (1998) Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes. Int J Radiat Oncol Biol Phys 42(4):913–916

    CAS  PubMed  Google Scholar 

  28. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59(16):3915–3918

    CAS  PubMed  Google Scholar 

  29. Semenza GL, Agani F, Feldser D, Iyer N, Kotch L, Laughner E, Yu A (2000) Hypoxia, hif-1, and the pathophysiology of common human diseases. Adv Exp Med Biol 475:123–130

    CAS  PubMed  Google Scholar 

  30. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, Iyer N, LaRusch J, Pak B, Taghavi P, Semenza GL (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143

    CAS  PubMed  Google Scholar 

  31. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) Hif-1-dependent regulation of hypoxic induction of the cell death factors bnip3 and nix in human tumors. Cancer Res 61(18):6669–6673

    CAS  PubMed  Google Scholar 

  32. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269(38):23757–23763

    CAS  PubMed  Google Scholar 

  33. Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16(10):1151–1162

    CAS  PubMed  Google Scholar 

  34. Wang F, Sekine H, Kikuchi Y, Takasaki C, Miura C, Heiwa O, Shuin T, Fujii-Kuriyama Y, Sogawa K (2002) Hif-1alpha-prolyl hydroxylase: molecular target of nitric oxide in the hypoxic signal transduction pathway. Biochem Biophys Res Commun 295(3):657–662

    CAS  PubMed  Google Scholar 

  35. Masson N, Ratcliffe PJ (2003) Hif prolyl and asparaginyl hydroxylases in the biological response to intracellular o(2) levels. J Cell Sci 116(Pt 15):3041–3049

    CAS  PubMed  Google Scholar 

  36. D’Angelo G, Duplan E, Boyer N, Vigne P, Frelin C (2003) Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits hif-1 responses during reoxygenation. J Biol Chem 278(40):38183–38187

    PubMed  Google Scholar 

  37. Siddiq A, Aminova LR, Ratan RR (2007) Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem Res 32(4–5):931–946

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95(14):7987–7992

    CAS  PubMed  Google Scholar 

  39. Huang LE, Pete EA, Schau M, Milligan J, Gu J (2002) Leu-574 of hif-1alpha is essential for the von hippel-lindau (vhl)-mediated degradation pathway. J Biol Chem 277(44):41750–41755

    CAS  PubMed  Google Scholar 

  40. Semenza GL (2001) Hif-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13(2):167–171

    CAS  PubMed  Google Scholar 

  41. Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271(5):2746–2753

    CAS  PubMed  Google Scholar 

  42. Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ (1999) Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 10(4):907–919

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Rondon IJ, MacMillan LA, Beckman BS, Goldberg MA, Schneider T, Bunn HF, Malter JS (1991) Hypoxia up-regulates the activity of a novel erythropoietin mRNA binding protein. J Biol Chem 266(25):16594–16598

    CAS  PubMed  Google Scholar 

  44. Scandurro AB, Beckman BS (1998) Common proteins bind mRNAs encoding erythropoietin, tyrosine hydroxylase, and vascular endothelial growth factor. Biochem Biophys Res Commun 246(2):436–440

    CAS  PubMed  Google Scholar 

  45. Gorlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH, Gassmann M (2000) Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. Biochim Biophys Acta 1493(1–2):125–134

    CAS  PubMed  Google Scholar 

  46. Schneider BD, Leibold EA (2003) Effects of iron regulatory protein regulation on iron homeostasis during hypoxia. Blood 102(9):3404–3411

    CAS  PubMed  Google Scholar 

  47. Lee M, Choi D, Choi MJ, Jeong JH, Kim WJ, Oh S, Kim YH, Bull DA, Kim SW (2006) Hypoxia-inducible gene expression system using the erythropoietin enhancer and 3′-untranslated region for the vegf gene therapy. J Control Release 115(1):113–119

    CAS  PubMed  Google Scholar 

  48. McCormick R, Buffa FM, Ragoussis J, Harris AL (2010) The role of hypoxia regulated micrornas in cancer. Curr Top Microbiol Immunol 345:47–70

    CAS  PubMed  Google Scholar 

  49. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    CAS  PubMed  Google Scholar 

  50. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered s-trail in human gliomas. Cancer Res 67(19):8994–9000

    CAS  PubMed  Google Scholar 

  51. Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins iscu1/2. Cell Metab 10(4):273–284

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29(30):4362–4368

    CAS  PubMed  Google Scholar 

  53. Liu C, Yu J, Yu S, Lavker RM, Cai L, Liu W, Yang K, He X, Chen S (2010) MicroRNA-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. J Hepatol 53(1):98–107

    CAS  PubMed  Google Scholar 

  54. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the pten tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    CAS  PubMed  Google Scholar 

  55. Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Shen X, You J, Hu XQ (2009) Clinical significance of miR-21 expression in breast cancer: SYBR-Green i-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep 21(3):673–679

    CAS  PubMed  Google Scholar 

  56. Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y, Qiang B, Yuan J, Sun M, Peng X (2008) MicroRNA-21 down-regulates the expression of tumor suppressor pdcd4 in human glioblastoma cell t98g. Cancer Lett 272(2):197–205

    CAS  PubMed  Google Scholar 

  57. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microrna signature of hypoxia. Mol Cell Biol 27(5):1859–1867

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K, Iba H (2008) MiR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378(3):492–504

    CAS  PubMed  Google Scholar 

  59. Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, Burchard J, Dai X, Chang AN, Diaz RL, Marszalek JR, Bartz SR, Carleton M, Cleary MA, Linsley PS, Grandori C (2009) MicroRNA miR-210 modulates cellular response to hypoxia through the myc antagonist mnt. Cell Cycle 8(17):2756–2768

    CAS  PubMed  Google Scholar 

  60. Semenza GL (2003) Targeting hif-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    CAS  PubMed  Google Scholar 

  61. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    CAS  PubMed  Google Scholar 

  62. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of ldh-a expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434

    CAS  PubMed  Google Scholar 

  63. Koppenol WH, Bounds PL, Dang CV (2011) Otto warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337

    CAS  PubMed  Google Scholar 

  64. Bensinger SJ, Christofk HR (2012) New aspects of the warburg effect in cancer cell biology. Semin Cell Dev Biol 23(4):352–361

    CAS  PubMed  Google Scholar 

  65. Kallinowski F, Schlenger KH, Runkel S, Kloes M, Stohrer M, Okunieff P, Vaupel P (1989) Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res 49(14):3759–3764

    CAS  PubMed  Google Scholar 

  66. Beaney RP, Brooks DJ, Leenders KL, Thomas DG, Jones T, Halnan KE (1985) Blood flow and oxygen utilisation in the contralateral cerebral cortex of patients with untreated intracranial tumours as studied by positron emission tomography, with observations on the effect of decompressive surgery. J Neurol Neurosurg Psychiatry 48(4):310–319

    CAS  PubMed  Google Scholar 

  67. Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter mct4, but not mct1, is up-regulated by hypoxia through a hif-1alpha-dependent mechanism. J Biol Chem 281(14):9030–9037

    CAS  PubMed  Google Scholar 

  68. Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2(4):343–366

    CAS  PubMed  Google Scholar 

  69. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49(16):4373–4384

    CAS  PubMed  Google Scholar 

  70. Engin K, Leeper DB, Thistlethwaite AJ, Tupchong L, McFarlane JD (1994) Tumor extracellular pH as a prognostic factor in thermoradiotherapy. Int J Radiat Oncol Biol Phys 29(1):125–132

    CAS  PubMed  Google Scholar 

  71. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extracellular pH distribution in human tumours. Int J Hyperthermia 11(2):211–216

    CAS  PubMed  Google Scholar 

  72. Volk T, Jahde E, Fortmeyer HP, Glusenkamp KH, Rajewsky MF (1993) pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer 68(3):492–500

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Jahde E, Volk T, Atema A, Smets LA, Glusenkamp KH, Rajewsky MF (1992) pH in human tumor xenografts and transplanted rat tumors: effect of insulin, inorganic phosphate, and m-iodobenzylguanidine. Cancer Res 52(22):6209–6215

    CAS  PubMed  Google Scholar 

  74. Leeper DB, Engin K, Thistlethwaite AJ, Hitchon HD, Dover JD, Li DJ, Tupchong L (1994) Human tumor extracellular pH as a function of blood glucose concentration. Int J Radiat Oncol Biol Phys 28(4):935–943

    CAS  PubMed  Google Scholar 

  75. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571

    CAS  PubMed  Google Scholar 

  76. Westlin WF (2001) Integrins as targets of angiogenesis inhibition. Cancer J 7(Suppl 3):S139–S143

    PubMed  Google Scholar 

  77. Danhier F, Le Breton A, Preat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9(11):2961–2973

    CAS  PubMed  Google Scholar 

  78. Temming K, Schiffelers RM, Molema G, Kok RJ (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8(6):381–402

    CAS  PubMed  Google Scholar 

  79. Brogi E, Schatteman G, Wu T, Kim EA, Varticovski L, Keyt B, Isner JM (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 97(2):469–476

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Lee JS, Feldman AM (1998) Gene therapy for therapeutic myocardial angiogenesis: a promising synthesis of two emerging technologies. Nat Med 4(6):739–742

    PubMed  Google Scholar 

  81. El-Mousawi M, Tchistiakova L, Yurchenko L, Pietrzynski G, Moreno M, Stanimirovic D, Ahmad D, Alakhov V (2003) A vascular endothelial growth factor high affinity receptor 1-specific peptide with antiangiogenic activity identified using a phage display peptide library. J Biol Chem 278(47):46681–46691

    CAS  PubMed  Google Scholar 

  82. Han JS, Kim HA, Lee S, Lee M (2010) Vegf receptor binding peptide-linked high mobility box group-1 box a as a targeting gene carrier for hypoxic endothelial cells. J Cell Biochem 110(5):1094–1100

    CAS  PubMed  Google Scholar 

  83. Atkins JH, Gershell LJ (2002) Selective anticancer drugs. Nat Rev Drug Discov 1(7):491–492

    CAS  PubMed  Google Scholar 

  84. Scholler N, Fu N, Yang Y, Ye Z, Goodman GE, Hellstrom KE, Hellstrom I (1999) Soluble member(s) of the mesothelin/megakaryocyte potentiating factor family are detectable in sera from patients with ovarian carcinoma. Proc Natl Acad Sci USA 96(20):11531–11536

    CAS  PubMed  Google Scholar 

  85. Chaidarun SS, Eggo MC, Sheppard MC, Stewart PM (1994) Expression of epidermal growth factor (egf), its receptor, and related oncoprotein (erbb-2) in human pituitary tumors and response to egf in vitro. Endocrinology 135(5):2012–2021

    CAS  PubMed  Google Scholar 

  86. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    CAS  PubMed  Google Scholar 

  87. Muss HB, Thor AD, Berry DA, Kute T, Liu ET, Koerner F, Cirrincione CT, Budman DR, Wood WC, Barcos M et al (1994) C-erbb-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 330(18):1260–1266

    CAS  PubMed  Google Scholar 

  88. Daniels RA, Turley H, Kimberley FC, Liu XS, Mongkolsapaya J, Ch’En P, Xu XN, ** BQ, Pezzella F, Screaton GR (2005) Expression of trail and trail receptors in normal and malignant tissues. Cell Res 15(6):430–438

    CAS  PubMed  Google Scholar 

  89. Chaudhry A, Carrasquillo JA, Avis IL, Shuke N, Reynolds JC, Bartholomew R, Larson SM, Cuttitta F, Johnson BE, Mulshine JL (1999) Phase I and imaging trial of a monoclonal antibody directed against gastrin-releasing peptide in patients with lung cancer. Clin Cancer Res 5(11):3385–3393

    CAS  PubMed  Google Scholar 

  90. Huang PS, Oliff A (2001) Drug-targeting strategies in cancer therapy. Curr Opin Genet Dev 11(1):104–110

    CAS  PubMed  Google Scholar 

  91. Moses MA, Brem H, Langer R (2003) Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 4(5):337–341

    CAS  PubMed  Google Scholar 

  92. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360

    CAS  PubMed  Google Scholar 

  93. Patchornik A, Berger A, Katchalski E (1957) Poly-l-histidine. J Am Chem Soc 79(19):5227–5230

    CAS  Google Scholar 

  94. Putnam D, Gentry CA, Pack DW, Langer R (2001) Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 98(3):1200–1205

    CAS  PubMed  Google Scholar 

  95. Wang CY, Huang L (1984) Polyhistidine mediates an acid-dependent fusion of negatively charged liposomes. Biochemistry 23(19):4409–4416

    CAS  PubMed  Google Scholar 

  96. Kang HC, Bae YH (2007) pH-tunable endosomolytic oligomers for enhanced nucleic acid delivery. Adv Funct Mater 17(8):1263–1272

    CAS  Google Scholar 

  97. Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91(1–2):103–113

    CAS  PubMed  Google Scholar 

  98. Lee ES, Shin HJ, Na K, Bae YH (2003) Poly(l-histidine)-peg block copolymer micelles and pH-induced destabilization. J Control Release 90(3):363–374

    CAS  PubMed  Google Scholar 

  99. Gerasimov OV, Boomer JA, Qualls MM, Thompson DH (1999) Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev 38(3):317–338

    CAS  PubMed  Google Scholar 

  100. Schally AV, Nagy A (1999) Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors. Eur J Endocrinol 141(1):1–14

    CAS  PubMed  Google Scholar 

  101. Klijn JG, Berns PM, Schmitz PI, Foekens JA (1992) The clinical significance of epidermal growth factor receptor (egf-r) in human breast cancer: a review on 5232 patients. Endocr Rev 13(1):3–17

    CAS  PubMed  Google Scholar 

  102. Sethuraman VA, Bae YH (2007) Tat peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118(2):216–224

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Lee ES, Kim D, Youn YS, Oh KT, Bae YH (2008) A virus-mimetic nanogel vehicle. Angew Chem Int Ed Engl 47(13):2418–2421

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Sabharanjak S, Mayor S (2004) Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev 56(8):1099–1109

    CAS  PubMed  Google Scholar 

  105. Kim HA, Mahato RI, Lee M (2009) Hypoxia-specific gene expression for ischemic disease gene therapy. Adv Drug Deliv Rev 61(7–8):614–622

    CAS  PubMed  Google Scholar 

  106. Ido A, Uto H, Moriuchi A, Nagata K, Onaga Y, Onaga M, Hori T, Hirono S, Hayashi K, Tamaoki T, Tsubouchi H (2001) Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter. Cancer Res 61(7):3016–3021

    CAS  PubMed  Google Scholar 

  107. Lee M, Rentz J, Bikram M, Han S, Bull DA, Kim SW (2003) Hypoxia-inducible vegf gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther 10(18):1535–1542

    CAS  PubMed  Google Scholar 

  108. Binley K, Iqball S, Kingsman A, Kingsman S, Naylor S (1999) An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Ther 6(10):1721–1727

    CAS  PubMed  Google Scholar 

  109. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KM, Stratford IJ, Harris AL (1997) Targeting gene expression to hypoxic tumor cells. Nat Med 3(5):515–520

    CAS  PubMed  Google Scholar 

  110. Binley K, Askham Z, Martin L, Spearman H, Day D, Kingsman S, Naylor S (2003) Hypoxia-mediated tumour targeting. Gene Ther 10(7):540–549

    CAS  PubMed  Google Scholar 

  111. Pin RH, Reinblatt M, Fong Y (2004) Employing tumor hypoxia to enhance oncolytic viral therapy in breast cancer. Surgery 136(2):199–204

    PubMed  Google Scholar 

  112. Cho WK, Seong YR, Lee YH, Kim MJ, Hwang KS, Yoo J, Choi S, Jung CR, Im DS (2004) Oncolytic effects of adenovirus mutant capable of replicating in hypoxic and normoxic regions of solid tumor. Mol Ther 10(5):938–949

    CAS  PubMed  Google Scholar 

  113. Greco O, Marples B, Dachs GU, Williams KJ, Patterson AV, Scott SD (2002) Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther 9(20):1403–1411

    CAS  PubMed  Google Scholar 

  114. Lu H, Zhang Y, Roberts DD, Osborne CK, Templeton NS (2002) Enhanced gene expression in breast cancer cells in vitro and tumors in vivo. Mol Ther 6(6):783–792

    CAS  PubMed  Google Scholar 

  115. Hernandez-Alcoceba R, Pihalja M, Nunez G, Clarke MF (2001) Evaluation of a new dual-specificity promoter for selective induction of apoptosis in breast cancer cells. Cancer Gene Ther 8(4):298–307

    CAS  PubMed  Google Scholar 

  116. Lee M (2009) Hypoxia targeting gene expression for breast cancer gene therapy. Adv Drug Deliv Rev 61(10):842–849

    CAS  PubMed  Google Scholar 

  117. Tang Y, Jackson M, Qian K, Phillips MI (2002) Hypoxia inducible double plasmid system for myocardial ischemia gene therapy. Hypertension 39(2 Pt 2):695–698

    CAS  PubMed  Google Scholar 

  118. McGary EC, Rondon IJ, Beckman BS (1997) Post-transcriptional regulation of erythropoietin mRNA stability by erythropoietin mRNA-binding protein. J Biol Chem 272(13):8628–8634

    CAS  PubMed  Google Scholar 

  119. Choi BH, Ha Y, Ahn CH, Huang X, Kim JM, Park SR, Park H, Park HC, Kim SW, Lee M (2007) A hypoxia-inducible gene expression system using erythropoietin 3′ untranslated region for the gene therapy of rat spinal cord injury. Neurosci Lett 412(2):118–122

    CAS  PubMed  Google Scholar 

  120. Kim HA, Kim K, Kim SW, Lee M (2007) Transcriptional and post-translational regulatory system for hypoxia specific gene expression using the erythropoietin enhancer and the oxygen-dependent degradation domain. J Control Release 121(3):218–224

    CAS  PubMed  Google Scholar 

  121. Koshikawa N, Takenaga K (2005) Hypoxia-regulated expression of attenuated diphtheria toxin a fused with hypoxia-inducible factor-1alpha oxygen-dependent degradation domain preferentially induces apoptosis of hypoxic cells in solid tumor. Cancer Res 65(24):11622–11630

    CAS  PubMed  Google Scholar 

  122. Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL (2004) Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood 103(5):1876–1882

    CAS  PubMed  Google Scholar 

  123. Koditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, Myllyharju J, Wenger RH, Katschinski DM (2007) Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110(10):3610–3617

    PubMed  Google Scholar 

  124. Kim HA, Lim S, Moon HH, Kim SW, Hwang KC, Lee M, Kim SH, Choi D (2010) Hypoxia-inducible vascular endothelial growth factor gene therapy using the oxygen-dependent degradation domain in myocardial ischemia. Pharm Res 27(10):2075–2084

    CAS  PubMed  Google Scholar 

  125. Won YW, Lee M, Kim HA, Bull DA, Kim SW (2012) Post-translational regulated and hypoxia-responsible vegf plasmid for efficient secretion. J Control Release 160(3):525–531

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Li L, Lin X, Staver M, Shoemaker A, Semizarov D, Fesik SW, Shen Y (2005) Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Res 65(16):7249–7258

    CAS  PubMed  Google Scholar 

  127. Chen C, Sun J, Liu G, Chen J (2009) Effect of small interference RNA targeting HIF-1alpha mediated by rAAV combined L: -ascorbate on pancreatic tumors in athymic mice. Pathol Oncol Res 15(1):109–114

    CAS  PubMed  Google Scholar 

  128. Bryant CS, Munkarah AR, Kumar S, Batchu RB, Shah JP, Berman J, Morris RT, Jiang ZL, Saed GM (2010) Reduction of hypoxia-induced angiogenesis in ovarian cancer cells by inhibition of HIF-1 alpha gene expression. Arch Gynecol Obstet 282(6):677–683

    CAS  PubMed  Google Scholar 

  129. Zhou H, Fei W, Bai Y, Zhu S, Luo E, Chen K, Hu J (2012) RNA interference-mediated downregulation of hypoxia-inducible factor-1alpha inhibits angiogenesis and survival of oral squamous cell carcinoma in vitro and in vivo. Eur J Cancer Prev 21(3):289–299

    CAS  PubMed  Google Scholar 

  130. Liu XQ, **ong MH, Shu XT, Tang RZ, Wang J (2012) Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm 9(10):2863–2874

    CAS  PubMed  Google Scholar 

  131. Culver C, Melvin A, Mudie S, Rocha S (2011) Hif-1alpha depletion results in sp1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs. Cell Cycle 10(8):1249–1260

    CAS  PubMed  Google Scholar 

  132. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T (2004) A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64(10):3365–3370

    CAS  PubMed  Google Scholar 

  133. Yoo JY, Kim JH, Kwon YG, Kim EC, Kim NK, Choi HJ, Yun CO (2007) Vegf-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Ther 15(2):295–302

    CAS  PubMed  Google Scholar 

  134. Lu PY, **e FY, Woodle MC (2005) Modulation of angiogenesis with sirna inhibitors for novel therapeutics. Trends Mol Med 11(3):104–113

    CAS  PubMed  Google Scholar 

  135. Won YW, Lee M, Kim HA, Bull DA, Kim SW (2013) Hypoxia-inducible plasmid expressing both mishp-1 and ho-1 for the treatment of ischemic disease. J Control Release 165(1):22–28

    CAS  PubMed  Google Scholar 

  136. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microrna/short hairpin rna pathways. Nature 441(7092):537–541

    CAS  PubMed  Google Scholar 

  137. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of micrornas in vivo with ‘antagomirs’. Nature 438(7068):685–689

    PubMed  Google Scholar 

  138. Stenvang J, Lindow M, Kauppinen S (2008) Targeting of microRNAs for therapeutics. Biochem Soc Trans 36(Pt 6):1197–1200

    CAS  PubMed  Google Scholar 

  139. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008) The utility of LNA in microrna-based cancer diagnostics and therapeutics. Semin Cancer Biol 18(2):89–102

    CAS  PubMed  Google Scholar 

  140. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S (2011) Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 43(4):371–378

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) MiR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    CAS  PubMed  Google Scholar 

  142. Selcuklu SD, Donoghue MT, Spillane C (2009) MiR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37(Pt 4):918–925

    CAS  PubMed  Google Scholar 

  143. Krichevsky AM, Gabriely G (2009) MiR-21: a small multi-faceted RNA. J Cell Mol Med 13(1):39–53

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhyung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, D.Y., Rhim, T., Lee, M. (2013). Cancer Cell Respiration: Hypoxia and pH in Solid Tumors. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_7

Download citation

Publish with us

Policies and ethics

Navigation