Simulation-Driven Antenna Design Using Surrogate-Based Optimization

  • Chapter
Surrogate-Based Modeling and Optimization

Abstract

Accurate responses of antennas, in many cases, can be obtained only with discrete full-wave electromagnetic (EM) simulations. Therefore, contemporary antenna design strongly relies on these EM simulations. On the other hand, direct use of high-fidelity EM simulations in the design process, particularly for automated parameter optimization, often results in prohibitive computational costs. In this chapter, we illustrate how the designs of various antennas can be obtained efficiently using an automated surrogate-based optimization (SBO) methodology. The SBO techniques considered here include the adaptive design specification technique, variable-fidelity simulation-driven optimization, and shape-preserving response prediction. The essence of these techniques resides in shifting the optimization burden to a fast surrogate of the antenna structure, and using coarse-discretization EM models to configure the surrogate. A properly created and handled surrogate serves as a reliable prediction tool allowing satisfactory designs to be obtained at the cost of a few simulations of the high-fidelity antenna model. We also demonstrate the effect of the coarse-discretization model fidelity on the final design quality and the computational cost of the design process. Finally, we give an example of automatic management of the coarse model quality. Recommendations concerning the application of specific SBO techniques to antenna design are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 145.59
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 145.59
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Volakis, J.L. (ed.): Antenna Engineering Handbook, 4th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  2. Special issue on synthesis and optimization techniques in electromagnetic and antenna system design. IEEE Trans. Antennas Propag. 55, 518–785 (2007)

    Google Scholar 

  3. Wrigth, S.J., Nocedal, J.: Numerical Optimization. Springer, Berlin (1999)

    Google Scholar 

  4. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandler, J.W., Seviora, R.E.: Wave sensitivities of networks. IEEE Trans. Microw. Theory Tech. 20, 138–147 (1972)

    Article  Google Scholar 

  6. Chung, Y.S., Cheon, C., Park, I.H., Hahn, S.Y.: Optimal design method for microwave device using time domain method and design sensitivity analysis—part II: FDTD case. IEEE Trans. Magn. 37, 3255–3259 (2001)

    Article  Google Scholar 

  7. CST Microwave Studio: CST AG, Bad Nauheimer Str. 19, D-64289, Darmstadt, Germany (2011)

    Google Scholar 

  8. HFSS: Release 13.0 ANSYS (2010). http://www.ansoft.com/products/hf/hfss/

  9. Haupt, R.L.: Antenna design with a mixed integer genetic algorithm. IEEE Trans. Antennas Propag. 55, 577–582 (2007)

    Article  Google Scholar 

  10. Kerkhoff, A.J., Ling, H.: Design of a band-notched planar monopole antenna using genetic algorithm optimization. IEEE Trans. Antennas Propag. 55, 604–610 (2007)

    Article  Google Scholar 

  11. Pantoja, M.F., Meincke, P., Bretones, A.R.: A hybrid genetic algorithm space-map** tool for the optimization of antennas. IEEE Trans. Antennas Propag. 55, 777–781 (2007)

    Article  Google Scholar 

  12. **, N., Rahmat-Samii, Y.: Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53, 3459–3468 (2005)

    Article  Google Scholar 

  13. Halehdar, A., Thiel, D.V., Lewis, A., Randall, M.: Multiobjective optimization of small meander wire dipole antennas in a fixed area using ant colony system. Int. J. RF Microw. Comput.-Aided Eng. 19, 592–597 (2009)

    Article  Google Scholar 

  14. **, N., Rahmat-Samii, Y.: Analysis and particle swarm optimization of correlator antenna arrays for radio astronomy applications. IEEE Trans. Antennas Propag. 56, 1269–1279 (2008)

    Article  Google Scholar 

  15. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space map**: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  16. Koziel, S., Bandler, J.W., Madsen, K.: A space map** framework for engineering optimization: theory and implementation. IEEE Trans. Microw. Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  17. Koziel, S., Echeverría-Ciaurri, D., Leifsson, L.: Surrogate-based methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, pp. 33–60. Springer, Berlin (2011)

    Chapter  Google Scholar 

  18. Rayas-Sánchez, J.E.: EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Trans. Microw. Theory Tech. 52, 420–435 (2004)

    Article  Google Scholar 

  19. Kabir, H., Wang, Y., Yu, M., Zhang, Q.J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microw. Theory Tech. 56, 867–879 (2008)

    Article  Google Scholar 

  20. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  21. Meng, J., **a, L.: Support-vector regression model for millimeter wave transition. Int. J. Infrared Millim. Waves 28, 413–421 (2007)

    Article  Google Scholar 

  22. Buhmann, M.D., Ablowitz, M.J.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  23. Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17, 129–150 (2001)

    Article  MATH  Google Scholar 

  24. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  25. Miraftab, V., Mansour, R.R.: EM-based microwave circuit design using fuzzy logic techniques. IEE Proc., Microw. Antennas Propag. 153, 495–501 (2006)

    Article  Google Scholar 

  26. Shaker, G.S.A., Bakr, M.H., Sangary, N., Safavi-Naeini, S.: Accelerated antenna design methodology exploiting parameterized Cauchy models. Prog. Electromagn. Res. 18, 279–309 (2009)

    Article  Google Scholar 

  27. Amari, S., LeDrew, C., Menzel, W.: Space-map** optimization of planar coupled-resonator microwave filters. IEEE Trans. Microw. Theory Tech. 54, 2153–2159 (2006)

    Article  Google Scholar 

  28. Quyang, J., Yang, F., Zhou, H., Nie, Z., Zhao, Z.: Conformal antenna optimization with space map**. J. Electromagn. Waves Appl. 24, 251–260 (2010)

    Article  Google Scholar 

  29. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space map**. IEEE Microw. Mag. 9, 105–122 (2008)

    Article  Google Scholar 

  30. Swanson, D., Macchiarella, G.: Microwave filter design by synthesis and optimization. IEEE Microw. Mag. 8, 55–69 (2007)

    Article  Google Scholar 

  31. Rautio, J.C.: Perfectly calibrated internal ports in EM analysis of planar circuits. In: IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, pp. 1373–1376 (2008)

    Google Scholar 

  32. Cheng, Q.S., Rautio, J.C., Bandler, J.W., Koziel, S.: Progress in simulator-based tuning—the art of tuning space map**. IEEE Microw. Mag. 11, 96–110 (2010)

    Article  Google Scholar 

  33. Echeverria, D., Hemker, P.W.: Space map** and defect correction. Comput. Methods Appl. Math. 5, 107–136 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58, 2829–2837 (2010)

    Article  Google Scholar 

  35. Chen, Z.N.: Wideband microstrip antennas with sandwich substrate. IET Microw. Antennas Propag. 2, 538–546 (2008)

    Article  Google Scholar 

  36. Koziel, S., Ogurtsov, S.: Robust multi-fidelity simulation-driven design optimization of microwave structures. In: IEEE MTT-S Int. Microwave Symp. Dig., pp. 201–204 (2010)

    Google Scholar 

  37. Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing use of approximation models in optimization. Struct. Multidiscip. Optim. 15, 16–23 (1998)

    Article  Google Scholar 

  38. Koziel, S., Ogurtsov, S.: Antenna design through variable-fidelity simulation-driven optimization. In: Loughborough Antennas & Propagation Conference, LAPC 2011, IEEEXplore (2011)

    Google Scholar 

  39. Koziel, S., Ogurtsov, S.: Computationally efficient simulation-driven antenna design using coarse-discretization electromagnetic models. In: IEEE Int. Symp. Antennas Propag., pp. 2928–2931 (2011)

    Google Scholar 

  40. Shum, S., Luk, K.: Stacked anunular ring dielectric resonator antenna excited by axi-symmetric coaxial probe. IEEE Trans. Microw. Theory Tech. 43, 889–892 (1995)

    Google Scholar 

  41. Koziel, S.: Efficient optimization of microwave structures through design specifications adaptation. In: Proc. IEEE Antennas Propag. Soc. International Symposium (APSURSI), Toronto, Canada (2010)

    Google Scholar 

  42. Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58, 2829–2837 (2010)

    Article  Google Scholar 

  43. Balanis, C.A.: Antenna Theory, 3rd edn. Wiley-Interscience, New York (2005)

    Google Scholar 

  44. Koziel, S., Ogurtsov, S.: Simulation-driven design in microwave engineering: methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence. Springer, Berlin (2011)

    Chapter  Google Scholar 

  45. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogatebased analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  46. Bandler, J.W., Koziel, S., Madsen, K.: Space map** for engineering optimization. SIAG/Optimization Views-and-News Special Issue on Surrogate/Derivative-free Optimization 17, 19–26 (2006)

    Google Scholar 

  47. Koziel, S., Ogurtsov, S., Leifsson, L.: Variable-fidelity simulation-driven design optimisation of microwave structures. Int. J. Math. Model. Numer. Optim. 3, 64–81 (2012)

    MATH  Google Scholar 

  48. Ogurtsov, S., Koziel, S.: Optimization of UWB planar antennas using adaptive design specifications. In: Proc. the 5th European Conference on Antennas and Propagation, EuCAP, pp. 2216–2219 (2011)

    Google Scholar 

  49. Ogurtsov, S., Koziel, S.: Design optimization of a dielectric ring resonator antenna for matched operation in two installation scenarios. In: Proc. International Review of Progress in Applied Computational Electromagnetics, ACES, pp. 424–428 (2011)

    Google Scholar 

  50. Koziel, S., Ogurtsov, S.: Rapid design optimization of antennas using space map** and response surface approximation models. Int. J. RF Microw. Comput.-Aided Eng. 21, 611–621 (2011)

    Article  Google Scholar 

  51. Ogurtsov, S., Koziel, S.: Simulation-driven design of dielectric resonator antenna with reduced board noise emission. In: IEEE MTT-S Int. Microwave Symp. Dig. (2011)

    Google Scholar 

  52. Schantz, H.: The Art and Science of Ultrawideband Antennas. Artech House, New York (2005)

    Google Scholar 

  53. Petosa, A.: Dielectric Resonator Antenna Handbook. Artech House, New York (2007)

    Google Scholar 

  54. Wi, S.-H., Lee, Y.-S., Yook, J.-G.: Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 55, 1196–1199 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koziel, S., Ogurtsov, S., Leifsson, L. (2013). Simulation-Driven Antenna Design Using Surrogate-Based Optimization. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_3

Download citation

Publish with us

Policies and ethics

Navigation