Brain Energy Metabolism

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

The brain is an organ of great complexity, whose mystique is tightly guarded by several protecting layers, from the physical armor of the skull to the biochemical border of the blood–brain barrier. What fuels the brain to sustain a range of neurophysiological states is a question of great importance not only to advance our insight on how brain functions, but also to shed some light on how to treat patients with neurological and psychiatric conditions.

The electrophysiological activity of the brain, usually measured in terms of frequency of neuronal firing, is a process which cannot be sustained unless the underlying metabolism is able to provide the energy required for the process of depolarization and subsequent repolarization to take place, including the supporting role of glial cells. In this chapter, we give an overview of the modeling of brain energy metabolism and how it can be coupled to models for electrophysiological and cerebrovascular dynamics.

Our understanding...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  CAS  Google Scholar 

  • Apelt J, Mehlhorn G, Schliebs R (1999) Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J Neurosci Res 57:693–705

    Article  CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  Google Scholar 

  • Aubert A, Costalat R (2002) A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. NeuroImage 17:1162–1181

    Article  Google Scholar 

  • Aubert A, Costalat R (2005) Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J Cereb Blood Flow Metab 25:1476–1490

    Article  CAS  Google Scholar 

  • Aubert A, Costalat R, Valabrègue R (2001) Modelling of the coupling between brain electrical activity and metabolism. Acta Biotheor 49:301–326

    Article  CAS  Google Scholar 

  • Bak LK, Walls AB, Schousboe A, Waagepetersen HS (2018) Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 293:7108–7116

    Article  CAS  Google Scholar 

  • Barreto E, Cressman JR (2011) Ion concentration dynamics as a mechanism for neuronal bursting. J Biol Phys 37:361–373

    Article  CAS  Google Scholar 

  • Barrett MJ, Tawhai MH, Suresh V (2012) Arteries dominate volume changes during brief functional hyperemia: evidence from mathematical modelling. NeuroImage 62:482–492

    Article  Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  CAS  Google Scholar 

  • Buxton R, Wong E, Frank L (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864

    Article  CAS  Google Scholar 

  • Calvetti D, Somersalo E (2011) Dynamic activation model for glutamatergic neurovascular unit. J Theor Biol 264:12–29

    Article  Google Scholar 

  • Calvetti D, Somersalo E (2012) Menage a trois: the role of neurotransmitters in the energy metabolism of astrocyte, glutamatergic, and GABAergic neurons. J Cereb Blood Flow Metab 32:1472–1483

    Article  CAS  Google Scholar 

  • Calvetti D, Somersalo E (2013) Quantitative in silico analysis of neurotransmitter pathways under steady state conditions. Front Endocrinol 4:137

    Article  Google Scholar 

  • Calvetti D, Cheng Y, Somersalo E (2015) A spatially distributed computational model of brain cellular metabolism. J Theor Biol 376:48–65

    Article  CAS  Google Scholar 

  • Calvetti D, Cheng Y, Somersalo E (2016) Uncertainty quantification in flux balance analysis of spatially lumped and distributed models of neuron–astrocyte metabolism. J Math Biol 73:1833–1849. https://doi.org/10.1007/s00285-016-1011-7

    Article  Google Scholar 

  • Calvetti D, Capo Rangel G, Gerardo Giorda L, Somersalo E (2018) A computational model integrating brain electrophysiology and metabolism highlights the key role of extracellular potassium and oxygen. J Theor Biol 446:238–258

    Article  CAS  Google Scholar 

  • Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J 36:1474–1492

    Article  CAS  Google Scholar 

  • Capo Rangel G, Prezioso J, Gerardo Giorda L, Somersalo E, Calvetti D (2018) An integrated computational model of human brain energy metabolism, electrophysiology and hemodynamics

    Google Scholar 

  • Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implication for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43

    Article  CAS  Google Scholar 

  • Cloutier M, Bolger FB, Lowry JP (2009) An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurement. J Comput Neurosci 27:39–414

    Article  Google Scholar 

  • Cooper AJL (2012) The role of glutamine synthetase and glutamine dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37:2439–2455

    Article  CAS  Google Scholar 

  • Cornish-Bowden E (2012) Fundamentals of enzyme kinetics, 4th edn. Wiley, Weinheim

    Google Scholar 

  • Cressman JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J Comput Neurosci 26:159–170

    Article  Google Scholar 

  • Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27:3–20

    Article  CAS  Google Scholar 

  • Dienel GA (2017) Lack of appropriate stoichiometry: strong evidence against an energetically important astrocyte–neuron lactate shuttle in brain. J Neurosci Res 95:2103–2125

    Article  CAS  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:586–602

    Article  CAS  Google Scholar 

  • DiNuzzo M, Giove F, Maraviglia B, Mangia S (2016) Computational flux balance analysis predicts that stimulation of energy metabolism in astrocytes and their metabolic interaction with neurons depend on uptake of K+ rather than glutamate. Neurochem Res 42:202–216

    Article  Google Scholar 

  • Fields RD (2009) The other brain: the scientific and medical breakthroughs that will heal our brains and revolutionize our health. Simon & Shuster, New York

    Google Scholar 

  • Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397

    Article  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neuronal activity. Science 241:462–264

    Article  CAS  Google Scholar 

  • Funalot B, Desport JC, Sturtz F, Camu W, Couratier P (2009) High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:113–117

    Article  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Uğurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100–E112

    Article  CAS  Google Scholar 

  • Heino J, Calvetti D, Somersalo E (2010) Metabolica: a statistical research tool for analyzing metabolic networks. Comput Methods Prog Biomed 97:151–167

    Article  Google Scholar 

  • Hertz L, Chen Y (2017) Integration between glycolysis and glutamate–glutamine cycle flux may explain preferential glycolytic increase during brain activation, requiring glutamate. Front Integr Neurosci 11:18

    Article  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  CAS  Google Scholar 

  • Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232

    Article  CAS  Google Scholar 

  • Hoyer S (1982) The abnormally aged brain. Its blood flow and oxidative metabolism. Arch Gerontol Geriatr 3:195–207

    Article  Google Scholar 

  • Huppert TJ, Allen MS, Benav H, Jones PB, Boas DA (2007) A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation. J Cereb Blood Flow Metab 27:1262–1279

    Article  Google Scholar 

  • Jolivet R, Coggan JS, Allaman I, Magistretti PJ (2015) Multi-timescale modeling of activity-dependent metabolic coupling in the neuron–glia–vasculature ensemble. PLoS Comput Biol 11:e1004036

    Article  Google Scholar 

  • Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    Article  CAS  Google Scholar 

  • Keener J, Sneyd J (2009) Mathematical physiology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Klingenberg M (1980) The ADP–ATP translocation in mitochondria, a membrane potential controlled transport. J Membr Biol 56:97–105

    Article  CAS  Google Scholar 

  • Kocsis L, Herman P, Eke A (2006) Mathematical model for the estimation of hemodynamic and oxygenation variables by tissue spectroscopy. J Theor Biol 241:262–275

    Article  CAS  Google Scholar 

  • Kong Y, Zheng Y, Johnston D, Martindale J, Jones M, Billings S, Mayhew J (2004) A model of the dynamic relationship between blood flow and volume changes during brain activation. J Cereb Blood Flow Metab 24:1382–1392

    Article  Google Scholar 

  • Kunji ER, Aleksandrova A, King MS, Majd H, Ashton VL, Cerson E, Springett R, Kibalchenko M, Tavoulari S, Crichton PG, Ruprecht JJ (2016) The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim Biophys Acta 1863:2379–2393

    Article  CAS  Google Scholar 

  • Lajtha A (2007) Handbook of neurochemistry and molecular neurobiology. Brain energetics. Integration of molecular and cellular processes, 3rd edn. Springer, New York

    Google Scholar 

  • Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31:17–35

    Article  Google Scholar 

  • Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R (2014) Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 9:2032–2048

    Article  CAS  Google Scholar 

  • Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R, König R (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28:1279–1285

    Article  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  Google Scholar 

  • Lourenco CF, Ledo A, Barbosa RM, Laran**ha J (2016) Neurovascular coupling mediated by neuronal derived-nitric oxide: mechanisms in health and dysfunction with impact on aging and Alzheimer’s disease. In: Gelpi R, Boveris A, Poderoso J (eds) Biochemistry of oxidative stress. Advances in biochemistry in health and disease, vol 16. Springer, Cham, pp 289–308

    Chapter  Google Scholar 

  • Mandeville JB, Marota JJ, Ayata C, Zaharchuk G, Moskowitz MA, Rosen BR, Weisskoff RM (1999) Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab 19:679–689

    Article  CAS  Google Scholar 

  • Marangoni AG (2003) Enzyme kinetics: a modern approach. Wiley, New York

    Google Scholar 

  • Martin K, Jackson CF, Levy RG, Cooper PN (2006) Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev 2:CD001903

    Google Scholar 

  • Massucci FA, DiNuzzo M, Giove F, Maraviglia B, Castillo IP, Marinari E, Martino AD (2013) Energy metabolism and glutamate–glutamine cycle in the brain: a stoichiometric modeling perspective. BMC Syst Biol 7:103

    Article  Google Scholar 

  • McDonals T, Puchowicz M, Borges K (2018) Impairments in oxidative glucose metabolism in epilepsy and metabolic treatment thereof. Front Cell Neurosci 12:274

    Article  Google Scholar 

  • McKenna M, Dienel GA, Sonneveld U, Waagepetersen H, Schousboe A (2012) Energy metabolism of the brain. In: Brady ST, Albers RW, Siegel JG, Price DL (eds) Basic neurochemistry: principles of molecular, cellular, and medical neurobiology, 8th edn. Elsevier, New York, pp 200–231

    Chapter  Google Scholar 

  • Melrose RJ, Ettenhofer ML, Harwood D, Achamallah N, Campa O, Mandelkern M, Sultzer DL (2011) Cerebral metabolism, cognition, and functional abilities in Alzheimer disease. J Geriatr Psychiatry Neurol 3:127–134

    Article  Google Scholar 

  • Mintun MA, Vlassenko AG, Rundle MM, Raichle ME (2004) Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci U S A 101:659–664

    Article  CAS  Google Scholar 

  • Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG–PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510

    Article  CAS  Google Scholar 

  • Nortley R, Attwell D (2017) Control of brain energy supply by astrocytes. Curr Opin Neurobiol 47:80–85

    Article  CAS  Google Scholar 

  • Occhipinti R, Puchowitcz MA, LaManna JC, Somersalo E, Calvetti D (2007) Statistical analysis of metabolic pathways of brain metabolism at steady state. Ann Biomed Eng 35:886–902

    Article  CAS  Google Scholar 

  • Occhipinti R, Somersalo E, Calvetti D (2008) Astrocytes as the glucose shunt for glutamatergic neurons at high activity: an in silico study. J Neurophysiol 101:2516–2527

    Google Scholar 

  • Occhipinti R, Somersalo E, Calvetti D (2010) Energetics of inhibition: insights with a computational model of the human GABAergic neuron–astrocyte cellular complex. J Cereb Blood Flow Metab 30:1834–1846

    Article  CAS  Google Scholar 

  • Papin JA, Stelling J, Price ND, Klamt S, Shuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400–405

    Article  CAS  Google Scholar 

  • Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229–248

    Article  CAS  Google Scholar 

  • Serlin Y, Shelef I, Knyazer B, Friedman A (2015) Anatomy and physiology of the blood–brain barrier. Semin Cell Dev Biol 38:2–6

    Article  Google Scholar 

  • Shoffner JM (1997) Oxidative phosphorylation defects and Alzheimer’s disease. Neurogenetics 1:13–19

    Article  CAS  Google Scholar 

  • Siesjo BK (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1–26

    Article  Google Scholar 

  • Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, Lozano AM (2012) Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol 69:1141–1148

    Article  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24:321–329

    Article  CAS  Google Scholar 

  • Somersalo E, Cheng Y, Calvetti D (2012) The metabolism of neurons and astrocytes through mathematical models. Ann Biomed Eng 40:2328–2344

    Article  CAS  Google Scholar 

  • Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A 107(41):17757–17762

    Article  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  CAS  Google Scholar 

  • Wei Y, Ullah G, Schiff SJ (2014) Unification of neuronal spikes, seizure, and spreading depression. J Neurosci 34:11733–11743

    Article  CAS  Google Scholar 

  • Wheless JW (2008) History of the ketogenic diet. Epilepsia 49(Suppl. 8):1528–1167

    Google Scholar 

  • Wiback SJ, Famili I, Greenberg HJ, Palsson BO (2004) Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J Theor Biol 228:437–447

    Article  Google Scholar 

  • Zheng Y, Johnston D, Berwick J, Chen D, Billings S, Mayhew J (2005) A three-compartment model of the hemodynamic response and oxygen delivery to brain. NeuroImage 28:925–939

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Calvetti .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Calvetti, D., Somersalo, E. (2019). Brain Energy Metabolism. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_100673-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_100673-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation