Bone Conduction and the Middle Ear

  • Chapter
  • First Online:
The Middle Ear

Part of the book series: Springer Handbook of Auditory Research ((SHAR))

Abstract

With more than a century of research in the field of bone conduction (BC) hearing, the importance of the contributors for bone-conducted sound is not clarified and there is no consensus on the issues. However, the literature suggests that the inner ear fluid inertia is the most important mechanism for speech frequencies. But several other contributors are generally within 10 dB of the most important one, including inertial effect of the middle ear ossicles. Most pathology in the outer and middle ear that severely affects the air conduction sound transmission affects the bone conduction sensitivity only to a minor extent. So even if the changed bone conduction sensitivity in a middle ear lesion is helpful for understanding underlying bone conduction physiology, its clinical relevance is minor. Also, the use of BC thresholds for differential diagnosis of the specific middle ear lesion is risky; the Carhart notch is not always identifiable in cases of otosclerotic ears, and other lesions show BC depression similar to the Carhart notch. There are several pitfalls when conducting BC testing. The most common are occlusion of the ear canal, airborne sound radiation from the transducers, and unmasked or overmasked nontest ear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aazh, H., Moore, B., Peyvandi, A., & Stenfelt, S. (2005). Influence of ear canal occlusion and static pressure difference on bone conduction thresholds: Implications for mechanisms of bone conduction. International Journal of Audiology, 44, 302–306.

    PubMed  Google Scholar 

  • Adamson, R., Bance, M., & Brown, J. (2010). A piezoelectric bone-conduction bending hearing actuator. The Journal of the Acoustical Society of America, 128(4), 2003–2008.

    CAS  PubMed  Google Scholar 

  • Advani, S. H., & Lee, Y.-C. (1970). Free vibrations of fluid-filled spherical shells. Journal of Sound and Vibration, 12(4), 453–462.

    Google Scholar 

  • Ahmad, I., & Pahor, A. (2002). Carhart’s notch: A finding in otitis media with effusion. International Journal of Pediatric Otorhinolaryngology, 64, 165–170.

    PubMed  Google Scholar 

  • Allen, G., & Fernandez, C. (1960). The mechanism of bone conduction. Annals of Otology, Rhinology and Laryngology, 69(1), 5–28.

    CAS  Google Scholar 

  • Arlinger, S. D., Kylén, P., & Hellqvist, H. (1978). Skull distortion of bone conducted signals. Acta Otolaryngologica, 85, 318–323.

    CAS  Google Scholar 

  • Awengen, D. (1993). Change of bone conduction thresholds by total footplate stapedectomy in relation to age. American Journal of Otolaryngology, 14(2), 105–110.

    CAS  PubMed  Google Scholar 

  • Banga, R., Lawrence, R., Reid, A., & McDermott, A. (2011). Bone-anchored hearing aids versus conventional hearing aids. Advances in Oto-Rhino-Laryngology, 71, 132–139.

    PubMed  Google Scholar 

  • Bárány, E. (1938). A contribution to the physiology of bone conduction. Acta Oto-Laryngologica, Supplementum 26, 1–223.

    Google Scholar 

  • Beattie, R. (1998). Normative wave V latency-intensity functions using the EARTONE 3A insert earphone and the Radioear B-71 bone vibrator. Scandinavian Audiology, 27, 120–126.

    CAS  PubMed  Google Scholar 

  • Beattie, R., & Smiarowski, R. (1981). Bone-conducted speech: Intelligibility functions and threshold force levels for spondees. The American Journal of Otology, 3(2), 109–115.

    CAS  PubMed  Google Scholar 

  • Behn, A., Westerberg, B., Zhang, H., Riding, K., Ludemann, J., & Kozak, F. (2007). Accuracy of the Weber and Rhinne tuning fork tests in evaluation of children with otitis media with effusion. Journal of Otolaryngology, 36(4), 197–202.

    PubMed  Google Scholar 

  • Berger, E. H. (1983). Laboratory attenuation of earmuffs and earplugs both singly and in combination. American Industrial Hygiene Association Journal, 44(5), 321–329.

    Google Scholar 

  • Berger, E. H., & Kerivan, J. E. (1983). Influence of physiological noise and the occlusion effect on the measurement of real-ear attenuation threshold. The Journal of the Acoustical Society of America, 74(1), 81–94.

    CAS  PubMed  Google Scholar 

  • Berger, K. W. (1976). Early bone conduction hearing aid devices. Archives of Otolaryngology, 102, 315–318.

    CAS  PubMed  Google Scholar 

  • Brinkmann, K., & Richter, U. (1983). Determination of the normal threshold of hearing by bone conduction using different types of bone vibrators. Part I. Audiological Acustics 22(3), 62–85.

    Google Scholar 

  • Brinkman, W., Marres, E., & Tolk, J. (1965). The mechanism of bone conduction. Acta Otolaryngol, 59, 109–115.

    Google Scholar 

  • Brooks, D. (1985). Fenestration: A twenty-five-year evaluation. The Journal of Laryngology and Otology, 99, 225–230.

    CAS  PubMed  Google Scholar 

  • Browning, G., & Gatehouse, S. (1984). Sensorineural hearing loss in stapedial otosclerosis. Annals of Otology Rhinology and Laryngology, 93, 13–16.

    CAS  Google Scholar 

  • Carhart, R. (1950). Clinical application of bone conduction audiometry. Archives of Otolaryngology, 798–808.

    Google Scholar 

  • Carhart, R. (1971). Effects of stapes fixation on bone-conductio response. In I. Ventry, J. Chaiklin & R. Dixon (Eds.), Hearing measurement: A book of readings (pp. 116–129). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Carle, R., Laugesen, S., & Nielsen, C. (2002). Observation on the relations among occlusion effect, compliance, and vent size. Journal of American Academy of Audiology, 10, 25–37.

    Google Scholar 

  • Carlsson, P., Håkansson, B., & Ringdahl, A. (1995). Force threshold for hearing by direct bone conduction. The Journal of the Acoustical Society of America, 97(2), 1124–1129.

    CAS  PubMed  Google Scholar 

  • Collet, L., Chanal, J., Hellal, H., Gartner, M., & Morgon, A. (1989). Validity of bone conduction stimulated ABR, MLR and otoacoustic emissions. Scandinavian Audiology, 18(1), 43–46.

    CAS  PubMed  Google Scholar 

  • Colquitt, J., Loveman, E., Baguley, D., Mitchell, T., Sheehan, P., Harris, P., Proops, D., Jones, J., Clegg, A., & Welch, K. (2011). Bone-anchored hearing aids for people with bilateral hearing impairment: A systematic review. Clinical Otolaryngology, 36(5), 419–441.

    CAS  PubMed  Google Scholar 

  • Dahlin, G., Allen, F., & Collard, E. (1973). Bone-conduction thresholds of human teeth. The Journal of the Acoustical Society of America, 53(5), 1434–1437.

    CAS  PubMed  Google Scholar 

  • Dean, M. S., & Martin, F. N. (2000). Insert earphone depth and the occlusion effect. American Journal of Audiology, 9, 131–134.

    CAS  PubMed  Google Scholar 

  • Deas, R., Adamson, R., Curran, L., Makki, F., Bance, M., & Brown, J. (2010). Audiometric thresholds measured with single and dual BAHA transducers: The effect of phase inversion. International Journal of Audiology, 49(12), 933–999.

    PubMed  Google Scholar 

  • Dirks, D. (1964). Factors related to bone conduction reliability. Archives of Otolaryngology, 79, 551–558.

    CAS  PubMed  Google Scholar 

  • Dirks, D., & Malmquist, C. (1969). Comparison of frontal and mastoid bone-conduction thresholda in various conductive lesions. Journal of Speech and Hearing Research, 12, 725–746.

    CAS  PubMed  Google Scholar 

  • Eeg-Olofsson, M., Stenfelt, S., Tjellström, A., & Granström, G. (2008). Transmission of bone-conducted sound in the human skull measured by cochlear vibrations. International Journal of Audiology, 47(12), 761–769.

    PubMed  Google Scholar 

  • Eeg-Olofsson, M., Stenfelt, S., & Granström, G. (2011). Implications for contralateral bone conducted transmission as measured by cochlear vibrations. Otology and Neurotology, 32, 192–198.

    PubMed  Google Scholar 

  • Eeg-Olofsson, M., Stenfelt, S., Håkansson, B., Taghavi, H., & Reinfeldt, S. (2013). Transmission of bone conducted sound—correlation between hearing perception and cochlear vibration. In press.

    Google Scholar 

  • Elpern, B., & Naunton, R. (1963). The stability of the occlusion effect. Archives of Otolaryngology, 77, 44–52.

    Google Scholar 

  • Everberg, G. (1968). Congenital absence of the oval window. Acta Oto-Laryngologica, 66, 320–332.

    CAS  PubMed  Google Scholar 

  • Flottorp, G., & Solberg, S. (1976). Mechanical impedance of human headbones (forehead and mastoid portion of temporal bone) measured under ISO/IEC conditions. The Journal of the Acoustical Society of America, 59(4), 899–906.

    CAS  PubMed  Google Scholar 

  • Frank, T., & Crandell, C. (1986). Acoustic radiation produced by B-71, B-72, and KH 70 bone vibrators. Ear and Hearing, 7(5), 344–347.

    CAS  PubMed  Google Scholar 

  • Franke, E. (1956). Response of the human skull to mechanical vibrations. The Journal of the Acoustical Society of America, 28(6), 1277–1284.

    Google Scholar 

  • Goldstein, D., & Hayes, C. (1971). The occlusion effect in bone-conduction hearing. In I. Ventry, J. Chaiklin & R. Dixon (Eds.), Hearing measurement: A book of readings (pp. 150–157). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Goodhill, V. (1966). External conductive hypacusis and the fixed malleus syndrome. Acta Oto-Laryngologica, Supplementum 217, 1–39.

    Google Scholar 

  • Goodhill, V., Dirks, D., & Malmquist, C. (1970). Bone-conduction thresholds. Relationships of frontal and mastoid measurement in conductive hypacusis. Archives Otolaryngology, 91, 250–256.

    CAS  Google Scholar 

  • Gopen, Q., Rosowski, J., & Merchant, S. (1997). Anatomy of the normal human cochlear aqueduct with functional implications. Hearing Research, 107, 9–22.

    CAS  PubMed  Google Scholar 

  • Groen, J., & Hoogland, G. (1958). Bone conduction and otosclerosis of the round window. Acta Oto-Laryngologica, 49, 206–212.

    CAS  PubMed  Google Scholar 

  • Håkansson, B. (2003). The balanced electromagnetic separationtransducer: Anew bone conduction transducer. The Journal of the Acoustical Society of America, 113(2), 818–825.

    PubMed  Google Scholar 

  • Håkansson, B., Tjellström, A., & Rosenhall, U. (1984). Hearing thresholds with direct bone conduction versus conventional bone conduction. Scandinavian Audiology, 13, 3–13.

    PubMed  Google Scholar 

  • Håkansson, B., Tjellström, A., & Rosenhall, U. (1985a). Acceleration levels at hearing threshold with direct bone conduction versus conventional bone conduction. Acta Oto-Laryngologica, 100, 240–252.

    PubMed  Google Scholar 

  • Håkansson, B., Tjellström, A., Rosenhall, U., & Carlsson, P. (1985b). The bone-anchored hearing aid. Principal design and psychoacoustical evaluation. Acta Oto-Laryngologica, 100, 229–239.

    PubMed  Google Scholar 

  • Håkansson, B., Carlsson, P., & Tjellström, A. (1986). The mechanical point impedance of the human head, with and without skin penetration. The Journal of the Acoustical Society of America, 80(4), 1065–1075.

    PubMed  Google Scholar 

  • Håkansson, B., Brandt, A., Carlsson, P., & Tjellström, A. (1994). Resonance frequency of the human skull in vivo. The Journal of the Acoustical Society of America, 95(3), 1474–1481.

    PubMed  Google Scholar 

  • Håkansson, B., Carlsson, P., Brandt, A., & Stenfelt, S. (1996). Linearity of sound transmission through the human skull in vivo. The Journal of the Acoustical Society of America, 99(4), 2239–2243.

    PubMed  Google Scholar 

  • Håkansson, B., Eeg-Olofsson, M., Reinfeldt, S., Stenfelt, S., & Granström, G. (2008). Percutaneous versus transcutaneous bone conduction implant system: A feasibility study on a cadaver head. Otology and Neurotology, 29(8), 1132–1139.

    PubMed  Google Scholar 

  • Håkansson, B., Reinfeldt, S., Eeg-Olofsson, M., Ostli, P., Taghavi, H., Adler, J., Gabrielsson, J., Stenfelt, S., & Granström, G. (2010). A novel bone conduction implant (BCI): Engineering aspects and pre-clinical studies. International Journal of Audiology, 49, 203–215.

    PubMed  Google Scholar 

  • Haeff, A., & Knox, C. (1963). Perception of ultrasound. Science, 139, 590–592.

    CAS  PubMed  Google Scholar 

  • Homma, K., Du, Y., Shimizu, Y., & Puria, S. (2009). Ossicular resonance modes of the human middle ear for bone and air conduction. The Journal of the Acoustical Society of America, 125(2), 968–979.

    PubMed Central  PubMed  Google Scholar 

  • Homma, K., Shimizu, Y., Kim, N., Du, Y., & Puria, S. (2010). Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses Hearing Research, 263, 204–215.

    PubMed  Google Scholar 

  • Hosoi, H., Imaizumi, S., Sakaguchi, T., Tonoike, M., & Murata, K. (1998). Activation of the auditory cortex by ultrasound. The Lancet, 351, 496–497.

    CAS  Google Scholar 

  • House, W. (1959). Oval window and round window surgery in extensive otosclerosis, a preliminary report. The Laryngoscope, 69, 693–701.

    CAS  PubMed  Google Scholar 

  • Howell, P., & Williams, M. (1989). Jaw movement and bone-conduction in normal listeners and a unilateral hemi-mandibulectomee. Scandinavian Audiology, 18, 231–236.

    CAS  PubMed  Google Scholar 

  • Howell, P., Williams, M., & Dix, H. (1988). Assessment of sound in the ear canal caused by movement of the jaw relative to the skull. Scandinavian Audiology, 17, 93–98.

    CAS  PubMed  Google Scholar 

  • Hoyer, H.-E., & Dörheide, J. (1983). A study of human head vibrations using time-avaraged holography. Journal of Neurosurgery, 58, 729–733.

    CAS  PubMed  Google Scholar 

  • Hudde, H. (2005). A Functional View on the Peripheral Human Hearing Organ. In J. Blauert (Ed.), Communication acoustics (pp. 47–74). Berlin: Springer.

    Google Scholar 

  • Huizing, E. (1960). Bone conduction—The influence of the middle ear. Acta Oto-Laryngologica, Supplementum, 155, 1–99.

    CAS  Google Scholar 

  • Humes, L. (1979). The middle ear inertial component of bone conduction hearing in man. Audiology, 18, 24–35.

    CAS  PubMed  Google Scholar 

  • Hurley, R. M., & Berger, K. W. (1970). The relationship between vibrator placement and bone conduction measurements with monaurally deaf subjects. Journal of Auditory Research, 10, 147–150.

    Google Scholar 

  • Irvine, D. (1976). Effects of reflex middle-ear muscle contractions on cochlear responses to bone-conducted sound. Audiology, 15, 433–444.

    CAS  PubMed  Google Scholar 

  • Irvine, D., Yates, G., & Johnstone, B. (1979). Bone conduction mechanisms: Mössbauer measurements on the role of ossicular inertia. Hearing Research, 1, 101–109.

    CAS  PubMed  Google Scholar 

  • Ishida, I., Cuthbert, B., & Stapells, D. (2011). Multiple auditory steady state response thresholds to bone conduction stimuli in adults with normal and elevated thresholds. Ear and Hearing, 32(3), 373–381.

    PubMed  Google Scholar 

  • ISO:8253-1. (2010). International Organization for Standardization Acoustics – Audiometric test methods—Part 1: Pure-tone air and bone conduction audiometry. Geneva.

    Google Scholar 

  • Jervall, L., & Arlinger, S. (1986). A compairson of 2-dB and 5-dB step size in pure-tone audiometry. Scandinavian Audiology, 15, 51–56.

    Google Scholar 

  • Kandzia, F., Oswald, J., & Janssen, T. (2011). Binaural measurement of bone conduction click evoked otoacoustic emissions in adults and infants. The Journal of the Acoustical Society of America, 129(3), 1464–1474.

    PubMed  Google Scholar 

  • Kaplan, D., Fliss, D., Kraus, M., Dagan, R., & Leiberman, A. (1996). Audiometric findings in children with chronic suppurative otitis media without cholesteatoma. International Journal of Pediatric Otorhinolaryngology, 35(2), 89–96.

    CAS  PubMed  Google Scholar 

  • Khalil, T. B., & Hubbard, R. P. (1977). Parametric study of head response by finite element modeling. Journal of Biomechanics, 10, 119–132.

    CAS  PubMed  Google Scholar 

  • Khalil, T. B., Viano, D. C., & Smith, D. L. (1979). Experimental analysis of the vibrational characteristics of the human skull. Journal of Sound and Vibration, 63(3), 351–376.

    Google Scholar 

  • Khanna, S. M., Tonndorf, J., & Queller, J. (1976). Mechanical parameters of hearing by bone conduction. The Journal of the Acoustical Society of America, 60, 139–154.

    CAS  PubMed  Google Scholar 

  • Killion, M., Wilber, L., & Gudmundsen, G. (1988). Zwislocki was right… Hearing Instruments, 39, 14–18

    Google Scholar 

  • Kim, N., Homma, K., & Puria, S. (2011). Inertial bone conduction: Symmetric and anti-symmetric components. Journal of the Association for Research in Otolaryngology, 12, 261–279.

    PubMed Central  PubMed  Google Scholar 

  • Klodd, D., & Egerton, B. (1977). Occlusion effect: bone conduction speech audiometry using forehead and mastoid placement. Audiology, 16(6), 522–529.

    CAS  PubMed  Google Scholar 

  • Kringlebotn, M. (1995). The equality of volume displacement in the inner ear windows. The Journal of the Acoustical Society of America, 98(1), 192–196.

    CAS  PubMed  Google Scholar 

  • Kucuk, B., Abe, K., & Ushiki, T. (1991). Microstructures of the bony modiolus in the human cochlea: Scanning electron microscopic study. Journal of Electron Microscopy, 40, 193–197.

    CAS  PubMed  Google Scholar 

  • Kylen, P., Harder, H., Jerlvall, L., & Arlinger, S. (1982). Reliability of bone-conducted electrocochleography. A clinical study. Scandinavian Audiology, 11(4), 223–226.

    CAS  PubMed  Google Scholar 

  • Laske, R., Röösli, C., Chatzimichalis, M., Sim, J., & Huber, A. (2011). The influence of prosthesis diameter in stapes suregery: A meta analysis and systematic review of the literature Otology and Neurotology, 32(4), 520–528.

    PubMed  Google Scholar 

  • Laukli, E., & Fjermedal, O. (1990). Reproducibility of hearing threshold measurements. Supplementary data on bone-conduction and speech audiometry. Scandinavian Audiology, 19(3), 187–190.

    CAS  PubMed  Google Scholar 

  • Lee, H., Hong, S., Hong, S., Choi, Y., & Chung, W. (2008). Ossicular chain reconstruction improves bone conduction threshold in chronic otitis media. The Journal of Laryngology and Otology, 122, 351–356.

    PubMed  Google Scholar 

  • Legouix, J., & Tarab, S. (1959). Experimental study of bone conduction in ears with mechanical impairment of the ossicles. The Journal of the Acoustical Society of America, 31(11), 1453–1457.

    Google Scholar 

  • Lenhardt, M., Skellett, R., Wang, P., & Clarke, A. (1991). Human ultrasonic speech perception. Science, 253, 82–85.

    CAS  PubMed  Google Scholar 

  • Linder, T., Ma, F., & Huber, A. (2003). Round window atresia and its effect on sound transmission. Otology and Neurotology, 24(2), 259–263.

    PubMed  Google Scholar 

  • Lindstrom, C., Rosen, A., Silverman, C., & Meiteles, L. (2001). Bone conduction impairment in chronic ear disease. Annals of Otology, Rhinology and Laryngology, 110, 437–441.

    Google Scholar 

  • Lowy, K. (1942). Cancellation of the electrical cochlear response with air- and bone-conducted sound. The Journal of the Acoustical Society of America, 14(2), 156–158.

    Google Scholar 

  • Martin, C., Tringali, S., Bertholon, P., Pouget, J.-F., & Prades, J.-M. (2002). Isolated congenital round window absence. Annals of Otology Rhinology and Laryngology, 111, 799–801.

    Google Scholar 

  • Merchant, S., & Rosowski, J. (2008). Conductive hearing loss caused by third-window lesions of the inner ear. Otology and Neurotology, 29(3), 282–289.

    PubMed Central  PubMed  Google Scholar 

  • Merchant, S., Nakajima, H., Halpin, C., Nadol, J. J., Lee, D., Innis, W., Curtin, H., & Rosowski, J. (2007). Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome. Annals of Otology Rhinology and Laryngology, 116(7), 532–541.

    Google Scholar 

  • Mikulec, A., McKenna, M., Ramsey, M., Rosowski, J., Herrmann, B., Rauch, S., Curtin, H., & Merchant, S. (2004). Superior semicircular canal dehiscence presenting as conductive hearing loss without vertigo. Otology and Neurotology, 25, 121–129.

    PubMed  Google Scholar 

  • Milner, R., Weeller, C., & Breman, A. (1983). Elevated bone conduction thresholds associated with middle ear fluid in adults. International Journal of Pediatric Otorhinolaryngology, 6(2), 163–169.

    CAS  PubMed  Google Scholar 

  • Miltenburg, D. (1994). The validity of tuning fork tests in diagnosing hearing loss. Journal of Otolaryngology, 23(4), 254–259.

    CAS  PubMed  Google Scholar 

  • Miyamoto, R., & House, H. (1978). Cochlear reserve in otosclerosis. A long-term follow-up of fenestration cases. Archives of Otolaryngology, 104, 464–466.

    CAS  PubMed  Google Scholar 

  • Møller, A. (2000). Hearing: Its physiology and pathophysiology. San Diego: Academic Press.

    Google Scholar 

  • Morgan, D., & Dirks, D. (1975). Influence of middle-ear muscle contraction on pure-tone suprathreshold loudness judgments. The Journal of the Acoustical Society of America, 57, 411–420.

    CAS  PubMed  Google Scholar 

  • Mudry, A., & Tjellström, A. (2011). Historical background of bone conduction hearing devices and bone conduction hearing aids. Advances in Oto-Rhino-Laryngology, 71, 1–9.

    PubMed  Google Scholar 

  • Munro, K. J., Paul, B., & Cox, C. L. (1997). Normative auditory brainstem response data for bone conduction in the dog. Journal of Small Animal Practice, 38, 353–356.

    CAS  PubMed  Google Scholar 

  • Mylanus, E., Snik, A., & Cremers, C. (1994). Influence of the thickness of the skin and subcutaneous tissue covering the mastoid on bone-conduction thresholds obtained transcutaneously versus percutaneously. Scandinavian Audiology, 23, 201–203.

    CAS  PubMed  Google Scholar 

  • Naunton, R. (1963). The measurement of hearing by bone conduction. In J. Jerger (Ed.), Modern developments in audiology (pp. 1–29). New York: Academic Press.

    Google Scholar 

  • Nilo, E. (1968). The relation of vibrator surface area and static application force to the vibrator-to-head coupling. Journal of Speech and Hearing Research, 11(4), 805–810.

    CAS  PubMed  Google Scholar 

  • Nishimura, T., Okayasu, T., Uratani, Y., Fukuda, F., Saito, O., & Hosoi, H. (2011). Peripheral perception mechanism of ultrasonic hearing. Hearing Research, 277, 176–183.

    PubMed  Google Scholar 

  • Nolan, M., & Lyon, D. J. (1981). Transcranial attenuation in bone conduction audiometry. The Journal of Laryngology and Otology, 95, 597–608.

    CAS  PubMed  Google Scholar 

  • Nolan, M., Lyon, D., & Mok, C. (1985). Air pressure changes in the external auditory meatus: The influence on pure tone bone conduction thresholds. The Journal of Laryngology and Otology, 99, 315–326.

    CAS  PubMed  Google Scholar 

  • Ogura, Y., Masuda, Y., Miki, M., Takeda, T., Watanabe, S., Ogawara, T., Shibata, S., Uyemura, T., & Yamamoto, Y. (1979). Vibration analysis of the human skull and auditory ossicles by holographic interferometry. In G. v. Bally (Ed.), Holography in medicine and biology. Berlin: Springer-Verlag.

    Google Scholar 

  • Ono, H. (1977). Improvement and evaluation of the vibration pick-up-type ear microphone and two-way communication device. The Journal of the Acoustical Society of America, 62(3), 760–768.

    CAS  PubMed  Google Scholar 

  • Palva, T., & Ojala, L. (1955). Middle ear conduction deafness and bone conduction. Acta Oto-Laryngologica, 45, 137–152.

    CAS  PubMed  Google Scholar 

  • Perez, R., Adelman, C., & Sohmer, H. (2011). Bone conduction activation through soft tissues following complete immobilization of the ossicular chain, stapes footplate and round window. Hearing Research, 280, 82–85.

    PubMed  Google Scholar 

  • Persson, P., Harder, H., & Magnuson, B. (1997). Hearing results in otosclerosis surgery after partial stapedectomy, total stapedectomy and stapedotomy. Acta Oto-Laryngologica, 117(1), 94–99.

    CAS  PubMed  Google Scholar 

  • Peterson, L., & Bogert, B. (1950). A dynamical theory of the cochlea. The Journal of the Acoustical Society of America, 22, 369–381.

    Google Scholar 

  • Pörschmann, C. (2000). Influences of bone conduction and air conduction on the sound of one’s own voice. AcusticaActa Acustica, 86, 1038–1045.

    Google Scholar 

  • Popelka, G., Telukuntla, G., & Puria, S. (2010a). Middle-ear function at high frequencies quantified with advanced bone-conduction measures. Hearing Research, 263, 85–92.

    PubMed Central  PubMed  Google Scholar 

  • Popelka, G., Derebery, J., Blevins, N., Murray, M., Moore, B., Sweetow, R., Wu, B., & Katsis, M. (2010b). Preliminary evaluation of a novel bone-conduction device for single-sided deafness. Otology and Neurotology, 31(3), 492–497.

    PubMed  Google Scholar 

  • Purcell, D., Kunov, H., Madsen, P., & Cleghorn, W. (1998). Distortion product otoacoustic emissions stimulated through bone conduction. Ear and Hearing, 19(5), 362–370.

    CAS  PubMed  Google Scholar 

  • Ranke, O., Keidel, W., & Weschke, H. (1952). Des Hören beim Verschluss des runden Fensters. Zeitschrift für Laryngologie, 31, 467–475.

    CAS  Google Scholar 

  • Reinfeldt, S., Stenfelt, S., & Håkansson, B. (2007a). Transcranial transmission of bone conducted sound measured acoustically and psychoacoustically. In A. Huber & A. Eiber (Eds.), Middle ear mechanics in research and otology: Proceedings of the 4th international symposium (pp. 276–281). Singapore: World Scientific.

    Google Scholar 

  • Reinfeldt, S., Stenfelt, S., Good, T., & Håkansson, B. (2007b). Examination of bone-conducted transmission from sound field excitation measured by thresholds, ear-canal sound pressure, and skull vibrations. The Journal of the Acoustical Society of America, 121(3), 1576–1587.

    PubMed  Google Scholar 

  • Reinfeldt, S., Ostli, P., Håkansson, B., & Stenfelt, S. (2010). Hearing one’s own voice during phoneme vocalization–transmission by air and bone conduction. The Journal of the Acoustical Society of America, 128, 751–762.

    PubMed  Google Scholar 

  • Richter, U., & Brinkmann, K. (1981). Threshold of hearing by bone conduction. Scandinavian Audiology, 10, 235–237.

    CAS  PubMed  Google Scholar 

  • Sabatino, D., & Stromsta, C. (1969). Bone conduction thresholds from three locations on the skull. The Journal of Auditory Research, 9, 194–198.

    Google Scholar 

  • Salomon, G., & Elberling, C. (1988). Estimation of inner ear function and conductive hearing loss based on electrocochleography. Advances in Audiology, 5, 46–55.

    Google Scholar 

  • Sato, E., Sugiura, M., Naganawa, S., Yoshino, T., Mizuno, T., Otake, H., Ishida, I., & Nakashima, T. (2007). Effect of an enlarged endolymphatic duct on bone conduction threshold. Acta Oto-Laryngologica, 128, 534–538.

    Google Scholar 

  • Schwartz, D., Larson, V., & DeChicchis, A. (1985). Spectral characteristics of air and bone conduction transducers used to record the auditory brain stem response. Ear and Hearing, 6(5), 274–277.

    CAS  PubMed  Google Scholar 

  • Shabana, Y., Ghonim, M., & Pedersen, C. (1999). Stapedotomy, does prosthesis diameter affect outcome. Clinical Otolaryngology, 24, 91–94.

    CAS  PubMed  Google Scholar 

  • Shera, C., & Zweig, G. (1992). An empirical bound on the compressibility of the cochlea. The Journal of the Acoustical Society of America, 92(3), 1382–1388.

    CAS  PubMed  Google Scholar 

  • Shipton, M. S., John, A. J., & Robinson, D. W. (1980). Air-radiated sound from bone vibration transducers and its implications for bone conduction audiometry. British Journal of Audiology, 14, 86–99.

    CAS  PubMed  Google Scholar 

  • Shishegar, M., Faramarzi, A., Esmaili, N., & Heydari, S. (2009). Is Carhart notch an accurate predictor of otitis media with effusion. International Journal of Pediatric Otorhinolaryngology, 73, 1799–1802.

    CAS  PubMed  Google Scholar 

  • Siegert, R. (2011). Partially implantable bone conduction hearing aids without a percutaneous abutment (Otomag): Technique and preliminary clinical results. Advances in Oto-Rhino-Laryngology, 71, 41–46.

    PubMed  Google Scholar 

  • Small, S., & Stapells, D. (2003). Normal brief-tone bone-conduction behavioral thresholds using the B-71 transducer: Three occlusion conditions. Journal of American Academy of Audiology, 14(10), 556–562.

    Google Scholar 

  • Snik, A., Mylanus, E., & Cremers, C. (1995). The bone-anchored hearing aid compared with conventional hearing aids. Otolaryngyologic Clinics of North America, 28(1), 73–83.

    CAS  Google Scholar 

  • Snik, A. F., Mylanus, E. A. M., Proops, D. W., Wolfaardt, J. F., Hodgetts, W. E., Somers, T., Niparko, J. K., Wazen, J. J., Sterkers, O., Cremers, C. W. R. J., & Tjellström, A. (2005). Consensus statements on the BAHA system: Where do we stand at present? Annals of Otology, Rhinology and Laryngology, 114(12), Supplementum 195:191–112.

    Google Scholar 

  • Snyder, J. (1973). Interaural attenuation characteristics in audiometry. The Laryngoscope, 83, 1847–1855.

    CAS  PubMed  Google Scholar 

  • Sohmer, H., Freeman, S., Geal-Dor, M., Adelman, C., & Savion, I. (2000). Bone conduction experiments in humans—a fluid pathway from bone to ear. Hearing Research, 146, 81–88.

    CAS  PubMed  Google Scholar 

  • Songer, J., & Rosowski, J. (2007). A mechano-acoustic model of the effect of superior canal dehiscence on hearing in chinchilla. The Journal of the Acoustical Society of America, 122(2), 943–951.

    PubMed Central  PubMed  Google Scholar 

  • Songer, J., & Rosowski, J. (2010). A superior semicircular canal dehiscence-induced air-bone gap in chinchilla. Hearing Research, 269, 70–80.

    PubMed Central  PubMed  Google Scholar 

  • Stenfelt, S. (2005). Bilateral fitting of BAHAs and BAHA fitted in unilateral deaf persons: Acoustical aspects. International Journal of Audiology, 44, 178–189.

    PubMed  Google Scholar 

  • Stenfelt, S. (2006). Middle ear ossicles motion at hearing thresholds with air conduction and bone conduction stimulation. The Journal of the Acoustical Society of America, 119(5), 2848–2858.

    PubMed  Google Scholar 

  • Stenfelt, S. (2007). Simultaneous cancellation of air and bone conduction tones at two frequencies: Extension of the famous experiment by von Békésy. Hearing Research, 225, 105–116.

    PubMed  Google Scholar 

  • Stenfelt, S. (2011). Acoustic and physiologic aspects of bone conduction hearing. Advances in Oto-Rhino-Laryngology, 71, 10–21.

    PubMed  Google Scholar 

  • Stenfelt, S. (2012a). A model for prediction of own voice alteration with hearing aids. In T. Dau, M.L. Jepsen, T. Poulsen, J.C. Dalsgaard (Eds.), Speech Perception and Auditory Disorders (pp. 323–330). The Danavox Jubilee Foundation

    Google Scholar 

  • Stenfelt, S. (2012b). Transcranial attenuation of bone conducted sound when stimulation is at the mastoid and at the bone conduction hearing aid position. Otology and Neurotology, 33, 105–114.

    PubMed  Google Scholar 

  • Stenfelt, S., & Håkansson, B. (1999). Sensitivity to bone-conducted sound: Excitation of the mastoid vs the teeth. Scandinavian Audiology, 28(3), 190–198.

    CAS  PubMed  Google Scholar 

  • Stenfelt, S., & Goode, R. (2005a). Bone conducted sound: Physiological and clinical aspects. Otology and Neurotology, 26, 1245–1261.

    PubMed  Google Scholar 

  • Stenfelt, S., & Goode, R. L. (2005b). Transmission properties of bone conducted sound: Measurements in cadaver heads. The Journal of the Acoustical Society of America, 118(4), 2373–2391.

    PubMed  Google Scholar 

  • Stenfelt, S., & Reinfeldt, S. (2007). A model of the occlusion effect with bone-conducted stimulation. International Journal of Audiology, 46(10), 595–608.

    PubMed  Google Scholar 

  • Stenfelt, S., & Puria, S. (2010). Consider bone-conducted human hearing. In C. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 142–162). Kerala: Research Signpost.

    Google Scholar 

  • Stenfelt, S., & Zeitooni, M. (2013). Binaural hearing with bone conduction stimulation. In press.

    Google Scholar 

  • Stenfelt, S., Håkansson, B., & Tjellström, A. (2000). Vibration characteristics of bone conducted sound in vitro. The Journal of the Acoustical Society of America, 107(1), 422–431.

    CAS  PubMed  Google Scholar 

  • Stenfelt, S., Hato, N., & Goode, R. (2002). Factors contributing to bone conduction: The middle ear. The Acoustical Society of America, 111(2), 947–959.

    Google Scholar 

  • Stenfelt, S., Wild, T., Hato, N., & Goode, R. L. (2003a). Factors contributing to bone conduction: The outer ear. The Journal of the Acoustical Society of America, 113(2), 902–912.

    PubMed  Google Scholar 

  • Stenfelt, S., Puria, S., Hato, N., & Goode, R. L. (2003b). Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hearing Research, 181, 131–143.

    PubMed  Google Scholar 

  • Stenfelt, S., Hato, N., & Goode, R. L. (2004). Round window membrane motion with air conduction and bone conduction stimulation. Hearing Research, 198, 10–24.

    PubMed  Google Scholar 

  • Stewart, C., Clark, J., & Niparko, J. (2011). Bone-anchored devices in single-sided deafness. Advances in Oto-Rhino-Laryngology, 71, 92–102.

    CAS  PubMed  Google Scholar 

  • Studebaker, G. (1962). Placement of vibrator in bone-conduction testing. Journal of Speech and Hearing Research, 5(4), 321–331.

    CAS  PubMed  Google Scholar 

  • Studebaker, G. (1964). Clinical masking of air and bone conducted stimuli. Journal of Speech and Hearing Disorders, 29, 23–35.

    CAS  PubMed  Google Scholar 

  • Tange, R., Bruijn, A., & Dreschler, W. (2000). Gold and teflon in the oval window: A comparison of stapes prostheses. In J. Rosowski & S. Merchant (Eds.), The function and mechanics of normal, diseased and reconstructed middle ears (pp. 255–260). Amsterdam: Kugler Publications.

    Google Scholar 

  • Taschke, H., & Hudde, H. (2006). A finite element model of the human head for auditory bone conduction simulation. ORL; Journal for Oto-Rhino-Laryngology and Its Related Specialties, 68(6), 319–323.

    PubMed  Google Scholar 

  • Teig, E., & Lindeman, H. (2000). Stapedotomy piston diameter: Is bigger better? In J. Rosowski & S. Merchant (Eds.), The function and mechanics of normal, diseased and reconstructed middle ears (pp. 281–287). Amsterdam: Kugler Publications.

    Google Scholar 

  • Toll, L., Emanuel, D., & Letowski, T. (2011). Effect of static force on bone conduction hearing thresholds and comfort. International Journal of Audiology, 50(9), 632–635.

    PubMed  Google Scholar 

  • Tonndorf, J. (1966). Bone conduction: Studies in experimental Animals. Acta Oto-Laryngologica, Supplementum (213), 1–132.

    Google Scholar 

  • Tonndorf, J. (1972). Bone conduction. In J. Tobias (Ed.), Foundations of modern auditory theory (Vol. II, pp. 197–237). New York: Academic Press.

    Google Scholar 

  • Tonndorf, J., & Jahn, A. F. (1981). Velocity of propagation of bone-conducted sound in a human head. The Journal of the Acoustical Society of America, 70(5), 1294–1297.

    CAS  PubMed  Google Scholar 

  • Walsh, T. (1962). Fenestration: Results, indications, limitations. In H. Schuknecht (Ed.), Otosclerosis (pp. 245–250). Boston: Little, Brown and Company.

    Google Scholar 

  • Watanabe, T., Bertoli, S., & Probst, R. (2008). Transmission pathways of vibratory stimulation as measured by subjective thresholds and distortion-product otoacoustic emissions. Ear and Hearing, 29, 667–673.

    PubMed  Google Scholar 

  • Wever, E. G., & Lawrence, M. (1954). Physiological acoustics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • von Békésy, G. (1932). Zur Theorie des Hörens bei der Schallaufnahme durch Knochenleitung. Annalen der Physik, 13, 111–136.

    Google Scholar 

  • von Békésy, G. (1941). Uber die Schallausbreitung bei Knochenleitung. Zeitschrift für Hals-, Nasen- und Ohrenheilkunde, 47, 430–442.

    Google Scholar 

  • von Békésy, G. (1948). Vibration of the head in a sound field, and its role in hearing by bone conduction. The Journal of the Acoustical Society of America, 20, 727–748.

    Google Scholar 

  • von Békésy, G. (1949). The structure of the middle ear and the hearing of one’s own voice by bone conduction. The Journal of the Acoustical Society of America, 21(3), 217–232.

    Google Scholar 

  • von Békésy, G. (1960). Experiments in hearing. New York: McGraw- Hill.

    Google Scholar 

  • Voss, S., Rosowski, J., & Peake, W. (1996). Is the pressure difference between the oval and round windows the effective acoustic stimulus for the cochlea. The Journal of the Acoustical Society of America, 100(3), 1602–1616.

    CAS  PubMed  Google Scholar 

  • Yetiser, S., Hidir, Y., Birkent, H., Satar, B., & Durmaz, A. (2008). Traumatic ossicular dislocations: Etiology and management. American Journal of Otolaryngology, 29, 31–36.

    PubMed  Google Scholar 

  • Yi, Z., Yang, J., Li, Z., Zhou, A., & Lin, Y. (2003). Bilateral congenital absence of stapes and oval window in 2 members of a family: Etiology and management. The Journal of Laryngology and Otology, 121, 219–221.

    Google Scholar 

  • Young, P. G. (2002). A parametric study on the axisymmetric modes of vibration of multi-layered spherical shells with liquid cores of relevance to head impact modelling. Journal of Sound and Vibration, 256(4), 665–680.

    Google Scholar 

  • Young, P. G. (2003). An analytical model to predict the response of fluid-filled shells to impact—a mosell for blunt head impacts. Journal of Sound and Vibration, 267, 1107–1126.

    Google Scholar 

  • Ysan, H. 2007. Predictive role of Carhart's notch in pre-operative assesment for middle ear surgery. The Journal of Laryngology and Otology 121, 219–221.

    Google Scholar 

  • Zheng, Y., Liu, Z., Zhang, Z., Sinclair, M., Droppo, J., Deng, L., Acero, A., & Huang, X. (2003). Air and bone conductive integrated microphones for robust speech detection and enhancement. IEEE Workshop on Automatic Speech Recognition and Understanding, 249–254.

    Google Scholar 

  • Zwislocki, J. (1953). Acoustic attenuation between the ears. The Journal of the Acoustical Society of America, 25(4), 752–759.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stenfelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stenfelt, S. (2013). Bone Conduction and the Middle Ear. In: Puria, S., Fay, R., Popper, A. (eds) The Middle Ear. Springer Handbook of Auditory Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6591-1_6

Download citation

Publish with us

Policies and ethics

Navigation