Spinal Interneurons

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century
  • 49 Accesses

Abstract

This chapter deals with the neurons that constitute the majority of spinal neurons and are the main source of input to motoneurons, and therefore of critical importance for all motor reactions. The description of spinal interneurons focuses on the properties of their main populations and on the operation of basic interneuronal networks, both in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

C T and L segments:

Cervical thoracic and lumbar spinal cord segments

EPSPs:

Excitatory postsynaptic potentials

GABA:

Gamma aminobutyric acid

HRP:

Horseradish peroxidise

IPSPs:

Inhibitory postsynaptic potentials

NA:

Noradrenaline

VGLUT1:

Vesicular glutamate transporter one

VGLUT2:

Vesicular glutamate transporter two

WGA:

Wheat germ agglutinin

References

  • Alvarez FJ, Dewey DE, Harrington DA, Fyffe RE (1997) Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord. J Comp Neurol 379:150–170

    Article  CAS  PubMed  Google Scholar 

  • Alvarez FJ, Fyffe RE (2007) The continuing case for the Renshaw cell. J Physiol 584:31–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownstone RM, Wilson JM (2008) Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res Rev 57:64–76

    Article  PubMed  Google Scholar 

  • Butt SJ, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963

    Article  CAS  PubMed  Google Scholar 

  • Cullheim S, Kellerth JO (1978) A morphological study of the axons and recurrent axon collaterals of cat alpha-motoneurones supplying different hind-limb muscles. J Physiol 281:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty KJ et al (2013) Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons. Neuron 80:920–933

    Article  CAS  PubMed  Google Scholar 

  • Flynn JR, Graham BA, Galea MP, Callister RJ (2011) The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 60:809–822

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Ekeberg O, El Manira A, Lansner A, Parker D, Tegner J, Wallen P (1998) Intrinsic function of a neuronal network – a vertebrate central pattern generator. Brain Res Rev 26:184–197

    Article  CAS  PubMed  Google Scholar 

  • Hagglund M, Borgius L, Dougherty KJ, Kiehn O (2010) Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13:246–252

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Johnson BR, Peck JH, Kloppenburg P, Ayali A, Skarbinski J (1998) Distributed effects of dopamine modulation in the crustacean pyloric network. Ann N Y Acad Sci 860:155–167

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka N, Mannen H, Hongo T, Sasaki S (1979) Trajectory of group Ia afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: three dimensional reconstructions from serial sections. J Comp Neurol 186:189–211

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E (2008) Spinal interneuronal networks in the cat; elementary components. Brain Res Rev 57:46–55

    Article  PubMed  Google Scholar 

  • Jankowska E, Hammar I, Chojnicka B, Heden CH (2000) Effects of monoamines on interneurons in four spinal reflex pathways from group I and/or group II muscle afferents. Eur J Neurosci 12:701–714

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E, Lindström S (1970) Morphological identification of physiologically defined neurones in the cat spinal cord. Brain Res 20:323–326

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E, Roberts W (1972) Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J Physiol 222:623–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowska E, Skoog B (1986) Labeling of midlumbar neurones projecting to cat hindlimb motoneurones by transneuronal transport of a horseradish peroxidase conjugate. Neurosci Lett 71:163–168

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306

    Article  CAS  PubMed  Google Scholar 

  • Liu TT, Bannatyne BA, Jankowska E, Maxwell DJ (2010) Properties of axon terminals contacting intermediate zone excitatory and inhibitory premotor interneurons with monosynaptic input from group I and II muscle afferents. J Physiol 588:4217–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg A (1975) Control of spinal mechanisms from the brain. In: Tower DB (ed) The basic neurosciences, vol 1. Raven, New York, pp 253–265

    Google Scholar 

  • McCrea DA (1998) Neuronal basis of afferent-evoked enhancement of locomotor activity. Ann N Y Acad Sci 860:216–225

    Article  CAS  PubMed  Google Scholar 

  • Noga BR, Shefchyk SJ, Jamal J, Jordan LM (1987) The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine. Exp Brain Res 66:99–105

    Article  CAS  PubMed  Google Scholar 

  • Picton LD, Bertuzzi M, Pallucchi I, Fontanel P, Dahlberg E, Bjornfors ER, Iacoviello F, Shearing PR, El Manira A (2021) A spinal organ of proprioception for integrated motor action feedback. Neuron 109:1188–1201 e1187

    Google Scholar 

  • Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379

    Article  CAS  PubMed  Google Scholar 

  • Roberts A, Soffe SR, Wolf ES, Yoshida M, Zhao FY (1998) Central circuits controlling locomotion in young frog tadpoles. Ann N Y Acad Sci 860:19–34

    Article  CAS  PubMed  Google Scholar 

  • Selverston A, Elson R, Rabinovich M, Huerta R, Abarbanel H (1998) Basic principles for generating motor output in the stomatogastric ganglion. Ann N Y Acad Sci 860:35–50

    Article  CAS  PubMed  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven/London

    Google Scholar 

  • Stepien AE, Arber S (2008) Probing the locomotor conundrum: descending the ‘V’ interneuron ladder. Neuron 60:1–4

    Article  CAS  PubMed  Google Scholar 

  • Stepien AE, Tripodi M, Arber S (2010) Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68:456–472

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Blagovechtchenski E, Brownstone RM (2010) Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion. J Neurosci 30:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Al-Mosawie A, Wilson JM, Brownstone RM (2007) Heterogeneity of V2-derived interneurons in the adult mouse spinal cord. Eur J Neurosci 26:3003–3015

    Article  CAS  PubMed  Google Scholar 

  • Alstermark B, Isa T, Pettersson LG, Sasaki S (2007) The C3-C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal Centre for voluntary motor control. Acta Physiol (Oxf) 189:123–140

    Article  CAS  Google Scholar 

  • Baldissera F, Hultborn H, Illert M (1981) Integration in spinal neuronal systems. In: Brooks VB (ed) Handbook of physiology the nervous system motor control. American Physiological Society, Bethesda, pp 509–595

    Google Scholar 

  • Bannatyne BA, Liu TT, Hammar I, Stecina K, Jankowska E, Maxwell DJ (2009) Excitatory and inhibitory intermediate zone interneurons in pathways from feline group I and II afferents: differences in axonal projections and input. J Physiol 587:379–399

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz A, Roberts A, Soffe SR (2010) Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci 4:36

    PubMed  PubMed Central  Google Scholar 

  • Burke RE (1999) The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp Brain Res 128:263–277

    Article  CAS  PubMed  Google Scholar 

  • Fetcho JR, Higashijima S, McLean DL (2008) Zebrafish and motor control over the last decade. Brain Res Rev 57:86–93

    Article  PubMed  Google Scholar 

  • Fetz EE, Perlmutter SI, Prut Y, Seki K, Votaw S (2002) Roles of primate spinal interneurons in preparation and execution of voluntary hand movement. Brain Res Rev 40:53–65

    Article  CAS  PubMed  Google Scholar 

  • Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultborn H (2006) Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog Neurobiol 78:215–232

    Article  PubMed  Google Scholar 

  • Jankowska E (2001) Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J Physiol 533:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowska E, Hammar I (2002) Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Res Rev 40:19–28

    Article  CAS  PubMed  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (eds) (1991) Principles of neural sciences. Elsevier, New York

    Google Scholar 

  • Lundberg A (1982) Inhibitory control from the brain stem of transmission from primary afferents to motoneurones, primary afferent terminals and ascending pathways. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier Biomedical Press, Amsterdam, pp 179–225

    Google Scholar 

  • McCrea DA (1992) Can sense be made of spinal interneuron circuits? Behav Brain Res 15:633–643

    Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord: its role in motor control and movement disorders. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elzbieta Jankowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jankowska, E. (2021). Spinal Interneurons. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_34-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_34-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6434-1

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation