Visual Photopigment Evolution in Speciation

  • Chapter
  • First Online:
Evolution of Visual and Non-visual Pigments

Part of the book series: Springer Series in Vision Research ((SSVR,volume 4))

Abstract

Visual pigment sensitivities are known to vary across organisms and habitats. The sensory drive theory was formulated over 20 years ago to help explain how such sensory variation could contribute to divergent selection and speciation. Since then, there have been only a few examples that support the idea that visual pigment evolution contributes to speciation. Here, I discuss what is required to demonstrate that evolution of visual pigments (and visual sensitivities) play a role speciation. I then identify systems where visual pigments are unlikely to have a role, where they might play a role, and where they likely have driven speciation. This review concludes that more examples are needed to identify instances where visual pigment evolution contributes to speciation and to determine how frequently sensory drive is at work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 111.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A1:

Vitamin A1-derived 11-cis retinal

A2:

Vitamin A2-derived 3,4-didehydroretinal

M/LWS:

Medium to long wavelength-sensitive

MSP:

Microspectrophotometry

RH1:

Rod opsin

RH2:

Rod opsin like 2

SWS:

Short wavelength-sensitive

UV:

Ultraviolet

References

  • Arikawa K, Pirih P, Stavenga DG. Rhabdom constriction enhances filtering by the red screening pigment in the eye of the Eastern Pale Clouded yellow butterfly, Colias erate (Pieridae). J Exp Biol. 2009;212(Pt 13):2057–64.

    PubMed  Google Scholar 

  • Asenjo AB, Rim J, Oprian DD. Molecular determinants of human red/green color discrimination. Neuron. 1994;12(5):1131–8.

    PubMed  CAS  Google Scholar 

  • Awata H, Wakakuwa M, Arikawa K. Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009;195(4):401–8.

    PubMed  Google Scholar 

  • Awata H, Matsushita A, Wakakuwa M, Arikawa K. Eyes with basic dorsal and specific ventral regions in the glacial Apollo, Parnassius glacialis (Papilionidae). J Exp Biol. 2010;213(Pt 23): 4023–9.

    PubMed  CAS  Google Scholar 

  • Beatty DD. Visual pigments and the labile scotopic visual system of fish. Vision Res. 1984;24(11):1563–73.

    PubMed  CAS  Google Scholar 

  • Bernard GD, Remington CL. Color vision in Lycaena butterflies: spectral tuning of receptor arrays in relation to behavioral ecology. Proc Natl Acad Sci U S A. 1991;88(7):2783–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boughman JW. Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature. 2001;411(6840):944–8.

    PubMed  CAS  Google Scholar 

  • Boughman JW. How sensory drive can promote speciation. Trends Ecol Evol. 2002;17(12): 571–7.

    Google Scholar 

  • Bowmaker JK. Microspectrophotometry of vertebrate photoreceptors. A brief review. Vision Res. 1984;24(11):1641–50.

    PubMed  CAS  Google Scholar 

  • Bowmaker JK. The visual pigments of fish. Prog Retin Eye Res. 1995;15(1):1–31.

    Google Scholar 

  • Bowmaker JK, Hunt DM. Evolution of vertebrate visual pigments. Curr Biol. 2006;16(13):R484–9.

    PubMed  CAS  Google Scholar 

  • Bowmaker JK, Govardovskii VI, Shukolyukov SA, Zueva LV, Hunt DM, Sideleva VG, Smirnova OG. Visual pigments and the photic environment: the cottoid fish of Lake Baikal. Vision Res. 1994;34(5):591–605.

    PubMed  CAS  Google Scholar 

  • Bradbury JW, Vehrencamp SL. Principles of animal communication. 2nd ed. Sunderland: Sinauer Associates; 2011.

    Google Scholar 

  • Briscoe AD. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol. 2000;51(2):110–21.

    PubMed  CAS  Google Scholar 

  • Briscoe AD. Functional diversification of lepidopteran opsins following gene duplication. Mol Biol Evol. 2001;18(12):2270–9.

    PubMed  CAS  Google Scholar 

  • Briscoe AD. Reconstructing the ancestral butterfly eye: focus on the opsins. J Exp Biol. 2008;211(Pt 11):1805–13.

    PubMed  CAS  Google Scholar 

  • Briscoe AD, Chittka L. The evolution of color vision in insects. Annu Rev Entomol. 2001;46:471–510.

    PubMed  CAS  Google Scholar 

  • Briscoe AD, Bybee SM, Bernard GD, Yuan F, Sison-Mangus MP, Reed RD, Warren AD, Llorente-Bousquets J, Chiao CC. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc Natl Acad Sci U S A. 2010;107(8):3628–33.

    PubMed  PubMed Central  Google Scholar 

  • Bybee SM, Yuan F, Ramstetter MD, Llorente-Bousquets J, Reed RD, Osorio D, Briscoe AD. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. Am Nat. 2012;179(1):38–51.

    PubMed  Google Scholar 

  • Carleton KL. Quantification of transcript levels with quantitative RT-PCR. Methods Mol Biol. 2011;772:279–95.

    PubMed  CAS  Google Scholar 

  • Carleton KL, Kocher TD. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol. 2001;18(8):1540–50.

    PubMed  CAS  Google Scholar 

  • Carleton KL, Parry JW, Bowmaker JK, Hunt DM, Seehausen O. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol Ecol. 2005;14(14):4341–53.

    PubMed  CAS  Google Scholar 

  • Carleton KL, Spady TC, Streelman JT, Kidd MR, McFarland WN, Loew ER. Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol. 2008;6:22.

    PubMed  PubMed Central  Google Scholar 

  • Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM. The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol. 2007;24(8):1843–52.

    PubMed  CAS  Google Scholar 

  • Carvalho LS, Davies WL, Robinson PR, Hunt DM. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc Biol Sci. 2012;279(1727):387–93.

    PubMed  PubMed Central  Google Scholar 

  • Chang BS, Crandall KA, Carulli JP, Hartl DL. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Mol Phylogenet Evol. 1995;4(1):31–43.

    PubMed  CAS  Google Scholar 

  • Changizi MA, Zhang Q, Shimojo S. Bare skin, blood and the evolution of primate colour vision. Biol Lett. 2006;2(2):217–21.

    PubMed  PubMed Central  Google Scholar 

  • Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AEO. Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol. 2003;13(22):R864–5.

    PubMed  CAS  Google Scholar 

  • Cowing JA, Poopalasundaram S, Wilkie SE, Bowmaker JK, Hunt DM. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Biochemistry. 2002;41(19):6019–25.

    PubMed  CAS  Google Scholar 

  • Coyle BJ, Hart NS, Carleton KL, Borgia G. Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. J Exp Biol. 2012;215(Pt 7):1090–105.

    PubMed  Google Scholar 

  • Coyne JA, Orr HA. Speciation. Sunderland: Sinauer Associates; 2004.

    Google Scholar 

  • Crandall KA, Cronin TW. The molecular evolution of visual pigments of freshwater crayfishes (Decapoda: Cambaridae). J Mol Evol. 1997;45(5):524–34.

    PubMed  CAS  Google Scholar 

  • Cronin TW. Invertebrate vision in water. In: Warrant E, Nilsson D-E, editors. Invertebrate vision. Cambridge: Cambridge University Press; 2006. p. 211–49.

    Google Scholar 

  • Cronin TW, Caldwell RL. Tuning of photoreceptor function in three mantis shrimp species that inhabit a range of depths. II. Filter pigments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002;188(3):187–97.

    PubMed  Google Scholar 

  • Cronin TW, Forward RB. The visual pigments of crabs I. Spectral characteristics. J Comp Physiol A. 1988;162:463–78.

    CAS  Google Scholar 

  • Cronin TW, Hariyama T. Spectral sensitivity in crustacean eyes. In: Wiese K, editor. The crustacean nervous system. Berlin: Springer; 2002. p. 499–511.

    Google Scholar 

  • Cronin TW, Marshall NJ, Caldwell RL. Visual pigment diversity in two genera of mantis shrimps implies rapid evolution (Crustacea; Stomatopoda). J Comp Physiol A. 1996;179:371–84.

    Google Scholar 

  • Cronin TW, Jarvilehto M, Weckstrom M, Lall AB. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J Comp Physiol A. 2000;186(1):1–12.

    PubMed  CAS  Google Scholar 

  • Cronin TW, Caldwell RL, Marshall J. Sensory adaptation. Tunable colour vision in a mantis shrimp. Nature. 2001;411(6837):547–8.

    PubMed  CAS  Google Scholar 

  • Cronin TW, Caldwell RL, Erdmann MV. Tuning of photoreceptor function in three mantis shrimp species that inhabit a range of depths. I. Visual pigments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002;188(3):179–86.

    PubMed  Google Scholar 

  • Cummings ME. Modelling divergence in luminance and chromatic detection performance across measured divergence in surfperch (Embiotocidae) habitats. Vision Res. 2004;44(11):1127–45.

    PubMed  Google Scholar 

  • Cummings ME. Sensory trade-offs predict signal divergence in Surfperch. Evolution. 2007;61(3): 530–45.

    PubMed  Google Scholar 

  • Cummings ME, Partridge JC. Visual pigments and optical habitats of surfperch (Embiotocidae) in the California kelp forest. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2001;187(11):875–89.

    PubMed  CAS  Google Scholar 

  • David-Gray ZK, Bellingham J, Munoz M, Avivi A, Nevo E, Foster RG. Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). Eur J Neurosci. 2002;16(7):1186–94.

    PubMed  CAS  Google Scholar 

  • Davies WI, Collin SP, Hunt DM. Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol. 2012;21(13):3121–58.

    PubMed  CAS  Google Scholar 

  • de Queiroz K. Ernst Mayr and the modern concept of species. Proc Natl Acad Sci U S A. 2005;102 Suppl 1:6600–7.

    PubMed  PubMed Central  Google Scholar 

  • Dobzhansky T. A critique of the species concept in biology. Philos Sci. 1935;2(3):344–55.

    Google Scholar 

  • Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937.

    Google Scholar 

  • Ebrey T, Koutalos Y. Vertebrate photoreceptors. Prog Retin Eye Res. 2001;20(1):49–94.

    PubMed  CAS  Google Scholar 

  • Endler JA. Signals, signal conditions and the direction of evolution. Am Nat. 1992;139:S125–53.

    Google Scholar 

  • Endler JA. Some general comments on the evolution and design of animal communication systems. Philos Trans R Soc Lond B Biol Sci. 1993;340(1292):215–25.

    PubMed  CAS  Google Scholar 

  • Endler JA, Basolo AL. Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol. 1998;13(10):415–20.

    PubMed  CAS  Google Scholar 

  • Fasick JI, Applebury ML, Oprian DD. Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochemistry. 2002;41(21):6860–5.

    PubMed  CAS  Google Scholar 

  • Flamarique IN, Cheng CL, Bergstrom C, Reimchen TE. Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors. J Exp Biol. 2013;216(Pt 4):656–67.

    PubMed  CAS  Google Scholar 

  • Frentiu FD, Bernard GD, Sison-Mangus MP, Brower AV, Briscoe AD. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Mol Biol Evol. 2007;24(9):2016–28.

    PubMed  CAS  Google Scholar 

  • Frith C, Frith DW. The Bowerbirds: ptilonorhychidae. Oxford: Oxford University Press; 2004.

    Google Scholar 

  • Fuller RC, Fleishman LJ, Leal M, Travis J, Loew E. Intraspecific variation in retinal cone distribution in the bluefin killifish, Lucania goodei. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003;189(8):609–16.

    PubMed  CAS  Google Scholar 

  • Fuller RC, Carleton KL, Fadool JM, Spady TC, Travis J. Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004;190(2):147–54.

    PubMed  CAS  Google Scholar 

  • Fuller RC, Carleton KL, Fadool JM, Spady TC, Travis J. Genetic and environmental variation in the visual properties of bluefin killifish, Lucania goodei. J Evol Biol. 2005;18(3):516–23.

    PubMed  CAS  Google Scholar 

  • Gavrilets S. Fitness landscapes and the origin of species. Princeton: Princeton University Press; 2004.

    Google Scholar 

  • Govardovskii VI. On the role of oil drops in colour vision. Vision Res. 1983;23(12):1739–40.

    PubMed  CAS  Google Scholar 

  • Haldane JBS. Can a species concept be justified? In: Sylvester-Bradley PC, editor. The species concept in paleontology. London: The Systematics Association; 1956.

    Google Scholar 

  • Harosi FI. An analysis of two spectral properties of vertebrate visual pigments. Vision Res. 1994;34(11):1359–67.

    PubMed  CAS  Google Scholar 

  • Hart NS. Variations in cone photoreceptor abundance and the visual ecology of birds. J Comp Physiol A. 2001;187(9):685–97.

    PubMed  CAS  Google Scholar 

  • Hart NS, Hunt DM. Avian visual pigments: characteristics, spectral tuning, and evolution. Am Nat. 2007;169 Suppl 1:S7–26.

    PubMed  Google Scholar 

  • Hofmann CM, Carleton KL. Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish. Integr Comp Biol. 2009;49(6):630–43.

    PubMed  CAS  Google Scholar 

  • Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL. The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol. 2009;7(12):e1000266.

    PubMed  PubMed Central  Google Scholar 

  • Hofmann CM, Marshall NJ, Abdilleh K, Patel Z, Siebeck UE, Carleton KL. Opsin evolution in damselfish: convergence, reversal, and parallel evolution across tuning sites. J Mol Evol. 2012;75(3–4):79–91.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK. Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Res. 1996;36(9):1217–24.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA, Parry JW, Wilkie SE, Davies WL, Bowmaker JK. Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochem Photobiol. 2007;83(2):303–10.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA, Davies WL. Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc Lond B Biol Sci. 2009;364(1531):2941–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jacobs GH. Evolution of colour vision in mammals. Philos Trans R Soc Lond B Biol Sci. 2009;364(1531):2957–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jacobs GH. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—a significant trend in the evolution of mammalian vision. Vis Neurosci. 2013;30(1–2):39–53.

    PubMed  Google Scholar 

  • Jordan R, Kellogg K, Howe D, Juanes F, Stauffer JR, Loew ER. Photopigment spectral absorbance of Lake Malawi cichlids. J Fish Biol. 2006;68(4):1291–9.

    Google Scholar 

  • Jordao JM, Cronin TW, Oliveira RF. Spectral sensitivity of four species of fiddler crabs (Uca pugnax, Uca pugilator, Uca vomeris and Uca tangeri) measured by in situ microspectrophotometry. J Exp Biol. 2007;210(Pt 3):447–53.

    PubMed  Google Scholar 

  • Kashiyama K, Seki T, Numata H, Goto SG. Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda. Mol Biol Evol. 2009;26(2): 299–311.

    PubMed  CAS  Google Scholar 

  • Kawata M, Shoji A, Kawamura S, Seehausen O. A genetically explicit model of speciation by sensory drive within a continuous population in aquatic environments. BMC Evol Biol. 2007;7:99.

    PubMed  PubMed Central  Google Scholar 

  • Koyanagi M, Nagata T, Katoh K, Yamashita S, Tokunaga F. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jum** spiders. J Mol Evol. 2008;66(2):130–7.

    PubMed  CAS  Google Scholar 

  • Kronforst MR, Young LG, Kapan DD, McNeely C, O’Neill RJ, Gilbert LE. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc Natl Acad Sci U S A. 2006;103(17):6575–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lall AB, Seliger HH, Biggley WH, Lloyd JE. Ecology of colors of firefly bioluminescence. Science. 1980;210(4469):560–2.

    PubMed  CAS  Google Scholar 

  • Lall AB, Strother GK, Cronin TW, Seliger HH. Modification of spectral sensitivities by screening pigments in the compound eyes of twilight-active fireflies (Coleoptera: Lampyridae). J Comp Physiol A. 1988;162(1):23–33.

    PubMed  CAS  Google Scholar 

  • Lall AB, Cronin TW, Bechara EJH, Costa C, Viviani VR. Visual ecology of bioluminescent beetles: visual spectral mechanisms and the colors of optical signaling in Coleoptera, Elateroidea: Lampyridae, Elateridae and Phengodidae. In: Meyer-Rochow VB, editor. Bioluminescence in focus: a collection of illuminating essays. Research Signpost: Trivandrum; 2009. p. 201–28.

    Google Scholar 

  • Lall AB, Cronin TW, Carvalho AA, de Souza JM, Barros MP, Stevani CV, Bechara EJ, Ventura DF, Viviani VR, Hill AA. Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010;196(9):629–38.

    PubMed  Google Scholar 

  • Leal M, Fleishman LJ. Evidence for habitat partitioning based on adaptation to environmental light in a pair of sympatric lizard species. Proc Biol Sci. 2002;269(1489):351–9.

    PubMed  PubMed Central  Google Scholar 

  • Levenson DH, Dizon A. Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans. Proc Biol Sci. 2003;270(1516):673–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levine JS, MacNichol Jr EF. Visual pigments in teleost fishes: effects of habitat, microhabitat, and behavior on visual system evolution. Sens Processes. 1979;3(2):95–131.

    PubMed  CAS  Google Scholar 

  • Levine JS, MacNichol Jr EF. Color vision in fishes. Sci Am. 1982;246(2):140–9.

    Google Scholar 

  • Loew ER. Determinants of visual pigment spectral location and photoreceptor cell spectral sensitivity. In: Djamgoz MBA, Archer SN, Vallerga S, editors. Neurobiology and clinical aspects of the outer retina. London: Chapman and Hall; 1995. p. 57–77.

    Google Scholar 

  • Loew ER, Dartnall HJ. Vitamin A1/A2-based visual pigment mixtures in cones of the rudd. Vision Res. 1976;16(9):891–6.

    PubMed  CAS  Google Scholar 

  • Loew ER, Lythgoe JN. The ecology of cone pigments in teleost fishes. Vision Res. 1978;18(6):715–22.

    PubMed  CAS  Google Scholar 

  • Loew ER, McFarland WN. The underwater visual environment. In: Douglas RH, Djamgoz MBA, editors. The visual system of fish. London: Chapman and Hall; 1990. p. 1–43.

    Google Scholar 

  • Loew ER, Fleishman LJ, Foster RG, Provencio I. Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. J Exp Biol. 2002;205(Pt 7):927–38.

    PubMed  Google Scholar 

  • Losey GS, McFarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ. Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia. 2003;2003(3):433–54.

    Google Scholar 

  • Losos JB, Jackman TR, Larson A, Queiroz K, Rodriguez-Schettino L. Contingency and determinism in replicated adaptive radiations of island lizards. Science. 1998;279(5359):2115–8.

    PubMed  CAS  Google Scholar 

  • Lythgoe JN. The ecology of vision. Oxford: Clarendon; 1979.

    Google Scholar 

  • Lythgoe JN, Muntz WR, Partridge JC, Shand J, Williams DM. The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. J Comp Physiol A. 1994;174:461–7.

    Google Scholar 

  • Maan ME, Hofker KD, van Alphen JJ, Seehausen O. Sensory drive in cichlid speciation. Am Nat. 2006;167(6).

    Google Scholar 

  • Mayr E. Systematics and the origin of species from the viewpoint of a zoologist. New York: Columbia University Press; 1942.

    Google Scholar 

  • Mayr E. The growth of biological thought. Cambridge: Harvard University Press; 1982.

    Google Scholar 

  • Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS. Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genet. 2013;9(4):e1003432.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller TL, Cribb TH. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae. Mol Phylogenet Evol. 2007;44(1):450–60.

    PubMed  CAS  Google Scholar 

  • Miyagi R, Terai Y, Aibara M, Sugawara T, Imai H, Tachida H, Mzighani SI, Okitsu T, Wada A, Okada N. Correlation between nuptial colors and visual sensitivities tuned by opsins leads to species richness in sympatric Lake Victoria cichlid fishes. Mol Biol Evol. 2012;29(11):3281–96.

    PubMed  CAS  Google Scholar 

  • Munz FW, McFarland WN. Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F, editor. The visual system in vertebrates. New York: Springer; 1977. p. 194–274.

    Google Scholar 

  • Newman LA, Robinson PR. Cone visual pigments of aquatic mammals. Vis Neurosci. 2005;22(6):873–9.

    PubMed  Google Scholar 

  • Odeen A, Hastad O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol Biol. 2013;13:36.

    PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Awata H, Wakakuwa M, Kinoshita M, Stavenga DG, Arikawa K. Coexpression of three middle wavelength-absorbing visual pigments in sexually dimorphic photoreceptors of the butterfly Colias erate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012; 198(12):857–67.

    PubMed  CAS  Google Scholar 

  • Oprian DD. Expression of opsin genes in COS cells. Methods Neurosci. 1993;15:301–6.

    Google Scholar 

  • O’Quin KE, Hofmann CM, Hofmann HA, Carleton KL. Parallel evolution of opsin gene expression in African cichlid fishes. Mol Biol Evol. 2010;27(12):2839–54.

    PubMed  Google Scholar 

  • Parry JW, Bowmaker JK. Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers. Vision Res. 2000;40(17):2241–7.

    PubMed  CAS  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A. 1992;170(1):23–40.

    PubMed  CAS  Google Scholar 

  • Plachetzki DC, Degnan BM, Oakley TH. The origins of novel protein interactions during animal opsin evolution. PLoS One. 2007;2(10):e1054.

    PubMed  PubMed Central  Google Scholar 

  • Porter ML, Bok MJ, Robinson PR, Cronin TW. Molecular diversity of visual pigments in Stomatopoda (Crustacea). Vis Neurosci. 2009;26(3):255–65.

    PubMed  Google Scholar 

  • Porter ML, Speiser DI, Zaharoff AK, Caldwell RL, Cronin TW, Oakley TH. The evolution of complexity in the visual systems of stomatopods: insights from transcriptomics. Integr Comp Biol. 2013;53(1):39–49.

    PubMed  CAS  Google Scholar 

  • Posnien N, Hopfen C, Hilbrant M, Ramos-Womack M, Murat S, Schonauer A, Herbert SL, Nunes MD, Arif S, Breuker CJ, Schlotterer C, Mitteroecker P, McGregor AP. Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup. PLoS One. 2012;7(5):e37346.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Provencio I, Loew ER, Foster RG. Vitamin A2-based visual pigments in fully terrestrial vertebrates. Vision Res. 1992;32(12):2201–8.

    PubMed  CAS  Google Scholar 

  • Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D, Arnone MI. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol. 2006;300(1):461–75.

    PubMed  CAS  Google Scholar 

  • Rennison DJ, Owens GL, Taylor JS. Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol. 2012;62(3):986–1008.

    PubMed  Google Scholar 

  • Seehausen O, van Alphen JJ. The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex). Behav Ecol Sociobiol. 1998;42:1–8.

    Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HD, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N. Speciation through sensory drive in cichlid fish. Nature. 2008;455(7213):620–6.

    PubMed  CAS  Google Scholar 

  • Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol. 2011;26(8):389–97.

    PubMed  Google Scholar 

  • Shand J, Davies WL, Thomas N, Balmer L, Cowing JA, Pointer M, Carvalho LS, Trezise AE, Collin SP, Beazley LD, Hunt DM. The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. J Exp Biol. 2008;211(Pt 9):1495–503.

    PubMed  CAS  Google Scholar 

  • Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J Exp Biol. 2006;209(Pt 16):3079–90.

    PubMed  CAS  Google Scholar 

  • Sison-Mangus MP, Briscoe AD, Zaccardi G, Knuttel H, Kelber A. The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green. J Exp Biol. 2008;211(Pt 3):361–9.

    PubMed  CAS  Google Scholar 

  • Smith AR, Ma K, Soares D, Carleton KL. Relative LWS cone opsin expression determines optomotor thresholds in Malawi cichlid fish. Genes Brain Behav. 2012;11(2):185–92.

    PubMed  CAS  Google Scholar 

  • Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton KL. Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol. 2005;22(6): 1412–22.

    PubMed  CAS  Google Scholar 

  • Stavenga DG, Arikawa K. Evolution of color and vision of butterflies. Arthropod Struct Dev. 2006;35(4):307–18.

    PubMed  Google Scholar 

  • Sugawara T, Terai Y, Imai H, Turner GF, Koblmuller S, Sturmbauer C, Shichida Y, Okada N. Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc Natl Acad Sci U S A. 2005;102(15):5448–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi Y, Ebrey TG. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. Biochemistry. 2003;42(20):6025–34.

    PubMed  CAS  Google Scholar 

  • Tan Y, Yoder AD, Yamashita N, Li WH. Evidence from opsin genes rejects nocturnality in ancestral primates. Proc Natl Acad Sci U S A. 2005;102(41):14712–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Terai Y, Mayer WE, Klein J, Tichy H, Okada N. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proc Natl Acad Sci U S A. 2002;99(24):15501–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Terai Y, Seehausen O, Sasaki T, Takahashi K, Mizoiri S, Sugawara T, Sato T, Watanabe M, Konijnendijk N, Mrosso HD, Tachida H, Imai H, Shichida Y, Okada N. Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol. 2006;4(12):e433.

    PubMed  PubMed Central  Google Scholar 

  • Thorpe A, Douglas RH, Truscott RJW. Spectral transmission and short-wave absorbing pigments in the fish lens—I. Phylogenetic distribution and identity. Vision Res. 1993;33(3):289–300.

    PubMed  CAS  Google Scholar 

  • Tong D, Rozas NS, Oakley TH, Mitchell J, Colley NJ, McFall-Ngai MJ. Evidence for light perception in a bioluminescent organ. Proc Natl Acad Sci U S A. 2009;106(24):9836–41.

    PubMed  CAS  PubMed Central  Google Scholar 

  • van der Meer HJ. Visual resolution during growth in a cichlid fish: a morphological and behavioural case study. Brain Behav Evol. 1995;45(1):25–33.

    PubMed  Google Scholar 

  • Wakakuwa M, Stavenga DG, Kurasawa M, Arikawa K. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J Exp Biol. 2004;207(Pt 16):2803–10.

    PubMed  CAS  Google Scholar 

  • Wakakuwa M, Stavenga DG, Arikawa K. Spectral organization of ommatidia in flower-visiting insects. Photochem Photobiol. 2007;83(1):27–34.

    PubMed  CAS  Google Scholar 

  • Wakakuwa M, Terakita A, Koyanagi M, Stavenga DG, Shichida Y, Arikawa K. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies. PLoS One. 2010;5(11):e15015.

    PubMed  PubMed Central  Google Scholar 

  • Wald G. The molecular basis of visual excitation. Nature. 1968;219(5156):800–7.

    PubMed  CAS  Google Scholar 

  • Wilkie SE, Robinson PR, Cronin TW, Poopalasundaram S, Bowmaker JK, Hunt DM. Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry. 2000;39(27):7895–901.

    PubMed  CAS  Google Scholar 

  • Yokoyama S. Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res. 2000;19(4):385–419.

    PubMed  CAS  Google Scholar 

  • Yokoyama S. Evolution of dim-light and color vision pigments. Annu Rev Genomics Hum Genet. 2008;9:259–82.

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Shi Y. Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett. 2000;486(2):167–72.

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB, Blow NS. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci U S A. 2000;97(13):7366–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yuan F, Bernard GD, Le J, Briscoe AD. Contrasting modes of evolution of the visual pigments in Heliconius butterflies. Mol Biol Evol. 2010;27(10):2392–405.

    PubMed  CAS  Google Scholar 

  • Zaccardi G, Kelber A, Sison-Mangus MP, Briscoe AD. Color discrimination in the red range with only one long-wavelength sensitive opsin. J Exp Biol. 2006;209(Pt 10):1944–55.

    PubMed  Google Scholar 

  • Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S. The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci U S A. 2009;106(22):8980–5.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Tom Cronin and Sara Stieb for suggestions regarding invertebrate visual pigment studies. Thanks to Tom Kocher, Mollie Cummings, and Adriana Briscoe for helpful discussions and comments on the manuscript. I appreciate the efforts of Ole Seehausen and Nori Okada in pushing forward the study of sensory drive in cichlid fishes. Thanks also to the University of Queensland for a travel fellowship that enabled me to write this review at UQ and on Lizard Island. I am grateful for NSF support from grant IOS-0841270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Carleton Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carleton, K.L. (2014). Visual Photopigment Evolution in Speciation. In: Hunt, D., Hankins, M., Collin, S., Marshall, N. (eds) Evolution of Visual and Non-visual Pigments. Springer Series in Vision Research, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4355-1_8

Download citation

Publish with us

Policies and ethics

Navigation