Adenosine and Energy Metabolism—Relationship to Brain Bioenergetics

  • Chapter
  • First Online:
Adenosine

Abstract

The brain is one of the most metabolically active organs in the body, but because it has a limited capacity to store bioenergetic molecules it requires a continuous supply of oxygen and energy. In order to meet the high metabolic needs of the brain, the blood–brain barrier selectively expresses specific transport systems including glucose transporters and monocarboxylic acid transporters that transport lactate and ketone bodies. As a universal energy source, adenosine triphosphate (ATP) drives biological reactions essential for brain functions, and loss of such cellular energy results in profound abnormalities in brain function. The high-energy phosphate bonds of ATP are rather labile and thus energy inherent in ATP is readily released when ATP is hydrolyzed sequentially to ADP, AMP, and finally adenosine. Although each of these molecules serves different functions and can activate different signaling pathways, our focus here is on adenosine and brain energy metabolism. Under basal conditions, brain levels of adenosine are nearly 10,000-fold lower than ATP. Therefore, unnoticeable and possibly physiologically irrelevant decreases in ATP levels can result in dramatic and physiologically relevant rises in adenosine levels. As brain energy levels drop, adenosine levels rise to adjust brain energy supply and to retaliate against an external stimulus that would otherwise cause excessive ATP breakdown. These actions of adenosine are mediated by adenosine receptors located on target cells including neurons, glial cells, and brain endothelial cells. A critical issue in studying brain bioenergetics is the precise and accurate measurement of levels of ATP and its metabolites including adenosine. Because these molecules can be degraded rapidly, it is challenging to make such measurements. Essential components in the correct assessment of brain energetics should include justifying carefully the methodology used and putting the data in the context of what is already known about brain energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Abbracchio MP, Ceruti S, Brambilla R, Franceschi C, Malorni W, Jacobson KA, von Lubitz DK, Cattabeni F (1997) Modulation of apoptosis by adenosine in the central nervous system: a possible role for the A3 receptor. Pathophysiological significance and therapeutic implications for neurodegenerative disorders. Ann N Y Acad Sci 825:11–22

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Lengacher S, Magistretti PJ, Pellerin L (2003) A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Am J Physiol Cell Physiol 284:C696–C704

    CAS  PubMed  Google Scholar 

  • Ambrosio AF, Malva JO, Carvalho AP, Carvalho CM (1997) Inhibition of N-, P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor. Eur J Pharmacol 340:301–310

    Article  CAS  PubMed  Google Scholar 

  • Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem 242:3239–3241

    CAS  PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56:1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Benarroch EE (2008) Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology 70:231–236

    Article  PubMed  Google Scholar 

  • Bergersen L, Rafiki A, Ottersen OP (2002) Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem Res 27:89–96

    Article  CAS  PubMed  Google Scholar 

  • Bixel MG, Hamprecht B (1995) Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem 65:2450–2461

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27:652–658

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89:537–552

    Article  CAS  PubMed  Google Scholar 

  • Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751

    Article  CAS  PubMed  Google Scholar 

  • Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS (2011) Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 31:13272–13280

    Article  CAS  PubMed  Google Scholar 

  • Cass CE, Young JD, Baldwin SA, Cabrita MA, Graham KA, Griffiths M, Jennings LL, Mackey JR, Ng AM, Ritzel MW et al (1999) Nucleoside transporters of mammalian cells. Pharm Biotechnol 12:313–352

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15:511–524

    Article  CAS  PubMed  Google Scholar 

  • Chih CP, Roberts EL Jr (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23:1263–1281

    Article  CAS  PubMed  Google Scholar 

  • Choi IY, Gruetter R (2003) In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int 43:317–322

    Article  CAS  PubMed  Google Scholar 

  • Choi IY, Tkac I, Ugurbil K, Gruetter R (1999) Noninvasive measurements of [1-13C]glycogen concentrations and metabolism in rat brain in vivo. J Neurochem 73:1300–1308

    Article  CAS  PubMed  Google Scholar 

  • Clausen T (1998) Clinical and therapeutic significance of the Na+, K+  pump*. Clin Sci (Lond) 95:3–17

    Article  CAS  Google Scholar 

  • Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22:1476–1489

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Ferre S, Vaugeois JM, Chen JF (2008) Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 14:1512–1524

    Article  CAS  PubMed  Google Scholar 

  • Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N et al (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27:3–20

    Article  CAS  PubMed  Google Scholar 

  • Dale N, Pearson T, Frenguelli BG (2000) Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol 526(Pt 1):143–155

    Article  CAS  PubMed  Google Scholar 

  • Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877

    Article  CAS  PubMed  Google Scholar 

  • Dare E, Schulte G, Karovic O, Hammarberg C, Fredholm BB (2007) Modulation of glial cell functions by adenosine receptors. Physiol Behav 92:15–20

    Article  CAS  PubMed  Google Scholar 

  • Delaney SM, Geiger JD (1996) Brain regional levels of adenosine and adenosine nucleotides in rats killed by high-energy focused microwave irradiation. J Neurosci Methods 64:151–156

    Article  CAS  PubMed  Google Scholar 

  • Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23:5928–5935

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  CAS  PubMed  Google Scholar 

  • Frenguelli BG, Llaudet E, Dale N (2003) High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J Neurochem 86:1506–1515

    Article  CAS  PubMed  Google Scholar 

  • Frenguelli BG, Wigmore G, Llaudet E, Dale N (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101:1400–1413

    Article  CAS  PubMed  Google Scholar 

  • Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399

    Article  CAS  PubMed  Google Scholar 

  • Gundlfinger A, Bischofberger J, Johenning FW, Torvinen M, Schmitz D, Breustedt J (2007) Adenosine modulates transmission at the hippocampal mossy fibre synapse via direct inhibition of presynaptic calcium channels. J Physiol 582:263–277

    Article  CAS  PubMed  Google Scholar 

  • Guzman M, Blazquez C (2001) Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab 12:169–173

    Article  CAS  PubMed  Google Scholar 

  • Guzman M, Blazquez C (2004) Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids 70:287–292

    Article  CAS  PubMed  Google Scholar 

  • Hammer J, Qu H, Haberg A, Sonnewald U (2001) In vivo effects of adenosine A2 receptor agonist and antagonist on neuronal and astrocytic intermediary metabolism studied with ex vivo 13C MR spectroscopy. J Neurochem 79:885–892

    Article  CAS  PubMed  Google Scholar 

  • Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB (1994) Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab 14:125–131

    Article  CAS  PubMed  Google Scholar 

  • Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29:7092–7097

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J, Terasaki T (2011) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 11:3939–3950

    Article  CAS  Google Scholar 

  • Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci U S A 100:4879–4884

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711

    Article  CAS  PubMed  Google Scholar 

  • Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL, Passonneau JV (1994) Control of glucose utilization in working perfused rat heart. J Biol Chem 269:25502–25514

    CAS  PubMed  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  CAS  PubMed  Google Scholar 

  • King AE, Ackley MA, Cass CE, Young JD, Baldwin SA (2006) Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci 27:416–425

    Article  CAS  PubMed  Google Scholar 

  • King LJ, Lowry OH, Passonneau JV, Venson V (1967) Effects of convulsants on energy reserves in the cerebral cortex. J Neurochem 14:599–611

    Article  CAS  PubMed  Google Scholar 

  • Koizumi J (1974) Glycogen in the central nervous system. Prog Histochem Cytochem 6:1–37

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22:5581–5587

    CAS  PubMed  Google Scholar 

  • Kratzing CC, Narayanaswami A (1953) The enzymic determination of energy-rich phosphates in brain. Biochem J 54:317–323

    CAS  PubMed  Google Scholar 

  • LaManna JC, Salem N, Puchowicz M, Erokwu B, Koppaka S, Flask C, Lee Z (2009) Ketones suppress brain glucose consumption. Adv Exp Med Biol 645:301–306

    Article  CAS  PubMed  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  • Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527

    Article  CAS  PubMed  Google Scholar 

  • Levitsky LL, Fisher DE, Paton JB, Delannoy CW (1977) Fasting plasma levels of glucose, acetoacetate, D-beta-hydroxybutyrate, glycerol, and lactate in the baboon infant: correlation with cerebral uptake of substrates and oxygen. Pediatr Res 11:298–302

    Article  CAS  PubMed  Google Scholar 

  • Llaudet E, Botting NP, Crayston JA, Dale N (2003) A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens Bioelectron 18:43–52

    Article  CAS  PubMed  Google Scholar 

  • Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77:3267–3273

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Cardozo M, Larsson OM, Schousboe A (1986) Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex. J Neurochem 46:773–778

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    CAS  PubMed  Google Scholar 

  • Lutz PL, Kabler S (1997) Release of adenosine and ATP in the brain of the freshwater turtle (Trachemys scripta) during long-term anoxia. Brain Res 769:281–286

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Martin J-L (1995) Brain energy metabolism: an integrated cellular perspective. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 657–670

    Google Scholar 

  • Mandel P, Harth S (1961) Free nucleotides of the brain in various mammals. J Neurochem 8:116–125

    Article  CAS  PubMed  Google Scholar 

  • Marchi M, Raiteri L, Risso F, Vallarino A, Bonfanti A, Monopoli A, Ongini E, Raiteri M (2002) Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br J Pharmacol 136:434–440

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Rolf Gruetter R, Sonnewald U, Waagepetersen HS, Schousboe A (2006) Energy metabolism of the brain. In: Siegel G, Albers RW, Brady S, Price DL (eds) Basic neurochemistry. London, Elsevier, pp 531–557

    Google Scholar 

  • Meghji P, Newby AC (1990) Sites of adenosine formation, action and inactivation in the brain. Neurochem Int 16:227–232

    Article  CAS  PubMed  Google Scholar 

  • Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47:442–448

    Article  CAS  PubMed  Google Scholar 

  • Mills JH, Alabanza L, Weksler BB, Couraud PO, Romero IA, Bynoe MS (2011) Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic Signal 7:265–273

    Article  CAS  PubMed  Google Scholar 

  • Mobbs CV, Mastaitis JW, Zhang M, Isoda F, Cheng H, Yen K (2007) Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease. Interdiscip Top Gerontol 35:39–68

    CAS  PubMed  Google Scholar 

  • Morgenthaler FD, van Heeswijk RB, **n L, Laus S, Frenkel H, Lei H, Gruetter R (2008) Non-invasive quantification of brain glycogen absolute concentration. J Neurochem 107:1414–1423

    Article  CAS  PubMed  Google Scholar 

  • Nelson SR, Schulz DW, Passonneau JV, Lowry OH (1968) Control of glycogen levels in brain. J Neurochem 15:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Newby AC, Worku Y, Meghji P, Nakazawa M, Skladanowski AC (1990) Adenosine: a retaliatory metabolite or not? Physiology 5:67–70

    CAS  Google Scholar 

  • O’Regan M (2005) Adenosine and the regulation of cerebral blood flow. Neurol Res 27:175–181

    Article  PubMed  Google Scholar 

  • Onodera H, Iijima K, Kogure K (1986) Mononucleotide metabolism in the rat brain after transient ischemia. J Neurochem 46:1704–1710

    Article  CAS  PubMed  Google Scholar 

  • Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Pak MA, Haas HL, Decking UK, Schrader J (1994) Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology 33:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  • Passonneau JV, Lauderdale VR (1974) A comparison of three methods of glycogen measurement in tissues. Anal Biochem 60:405–412

    Article  CAS  PubMed  Google Scholar 

  • Patel MS, Johnson CA, Rajan R, Owen OE (1975) The metabolism of ketone bodies in develo** human brain: development of ketone-body-utilizing enzymes and ketone bodies as precursors for lipid synthesis. J Neurochem 25:905–908

    Article  CAS  PubMed  Google Scholar 

  • Pazzagli M, Pedata F, Pepeu G (1993) Effect of K+ depolarization, tetrodotoxin, and NMDA receptor inhibition on extracellular adenosine levels in rat striatum. Eur J Pharmacol 234:61–65

    Article  CAS  PubMed  Google Scholar 

  • Pelligrino DA, Xu HL, Vetri F (2010) Caffeine and the control of cerebral hemodynamics. J Alzheimers Dis 20(Suppl 1):S51–S62

    CAS  PubMed  Google Scholar 

  • Peng L, Huang R, Yu AC, Fung KY, Rathbone MP, Hertz L (2005) Nucleoside transporter expression and function in cultured mouse astrocytes. Glia 52:25–35

    Article  PubMed  Google Scholar 

  • Ponten U, Ratcheson RA, Salford LG, Siesjo BK (1973) Optimal freezing conditions for cerebral metabolites in rats. J Neurochem 21:1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the develo** rat brain. Neuroscience 122:677–688

    Article  CAS  PubMed  Google Scholar 

  • Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134

    Article  CAS  PubMed  Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    CAS  PubMed  Google Scholar 

  • Sagar SM, Sharp FR, Swanson RA (1987) The regional distribution of glycogen in rat brain fixed by microwave irradiation. Brain Res 417:172–174

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 9:651–658

    CAS  PubMed  Google Scholar 

  • Shepel PN, Ramonet D, Stevens P, Geiger JD (2005) Purine level regulation during energy depletion associated with graded excitatory stimulation in brain. Neurol Res 27:139–148

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664

    Article  CAS  PubMed  Google Scholar 

  • Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563:227–233

    Article  CAS  PubMed  Google Scholar 

  • Spector R (2009) Nutrient transport systems in brain: 40 years of progress. J Neurochem 111:315–320

    Article  CAS  PubMed  Google Scholar 

  • Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy JM, Boison D (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125–137

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, King GL, Aiello LP (1998) Hypoxia upregulates glucose transport activity through an adenosine-mediated increase of GLUT1 expression in retinal capillary endothelial cells. Diabetes 47:1480–1488

    Article  CAS  PubMed  Google Scholar 

  • Van Wylen DG, Park TS, Rubio R, Berne RM (1986) Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia. J Cereb Blood Flow Metab 6:522–528

    Article  PubMed  Google Scholar 

  • Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21:2–21

    Article  CAS  PubMed  Google Scholar 

  • Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285:E1127–E1134

    CAS  PubMed  Google Scholar 

  • Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr (2001) Ketone bodies, potential therapeutic uses. IUBMB Life 51:241–247

    Article  CAS  PubMed  Google Scholar 

  • Veech RL, Harris RL, Veloso D, Veech EH (1973) Freeze-blowing: a new technique for the study of brain in vivo. J Neurochem 20:183–188

    Article  CAS  PubMed  Google Scholar 

  • Verhaegen M, Iaizzo PA, Todd MM (1995) A comparison of the effects of hypothermia, pentobarbital, and isoflurane on cerebral energy stores at the time of ischemic depolarization. Anesthesiology 82:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • von Lubitz DK, Ye W, McClellan J, Lin RC (1999) Stimulation of adenosine A3 receptors in cerebral ischemia. Neuronal death, recovery, or both? Ann N Y Acad Sci 890:93–106

    Article  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    CAS  PubMed  Google Scholar 

  • White H, Venkatesh B (2011) Clinical review: Ketones and brain injury. Crit Care 15:219

    Article  PubMed  Google Scholar 

  • Yang SY, He XY, Schulz H (1987) Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. J Biol Chem 262:13027–13032

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work currently conducted in our laboratories is supported by 2P20RR0017699 from the NCRR, a component of the NIH, and by R01NS069597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Geiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, X., Hui, L., Geiger, J.D. (2013). Adenosine and Energy Metabolism—Relationship to Brain Bioenergetics. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_3

Download citation

Publish with us

Policies and ethics

Navigation