Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 747))

Abstract

Controlled cell death, or apoptosis, occurs in response to many different environmental stimuli. The apoptotic cascade that occurs within the cell in response to these cues leads to morphological and biochemical changes that trigger the dismantling and packaging of the cell. Caspases are a family of cysteine-dependent aspartate-directed proteases that play an integral role in the cascade that leads to apoptosis. Caspases are grouped as either initiators or effectors of apoptosis, depending on where they enter the cell death process. Prior to activation, initiator caspases are present as monomers that must dimerize for full activation whereas effector caspases are present as dimeric zymogens that must be processed for full activation. The stability of the dimer may be due predominately to the interactions in the dimer interface as each caspase has unique properties in this region that lend to its specific mode of activation. Moreover, dimerization is responsible for active site formation because both monomers contribute residues that enable the formation of a fully functional active site. Overall, dimerization plays a key role in the ability of caspases to form fully functional proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jacobson MD, Weill M, Raff MC. Programmed cell death in animal development. Cell 1997; 88:347–354.

    Article  PubMed  CAS  Google Scholar 

  2. Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Internal Med 2005; 258:479–517.

    Article  PubMed  CAS  Google Scholar 

  3. Kabore AF, Johnston JB, Gibson SB. Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic implications. Current Cancer Drug Targets 2004; 4:147–163.

    Article  PubMed  CAS  Google Scholar 

  4. Fulda S, Debatin K-M. Targeting apoptosis pathways in cancer therapy. Current Cancer Drug Targets 2004; 4:569–576.

    Article  PubMed  CAS  Google Scholar 

  5. Meng XW, Lee S-H, Kaufmann SH. Apoptosis in the treatment of cancer: a promise kept? Curr Op Cell Biol 2006; 18:668–676.

    Article  PubMed  CAS  Google Scholar 

  6. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates and functions during apoptosis. Ann Rev Biochem 1999; 68:383–424.

    Article  PubMed  CAS  Google Scholar 

  7. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Intern Rev Cytol 1980; 68:251–306.

    Article  CAS  Google Scholar 

  8. Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 1989; 49:5870–5878.

    PubMed  CAS  Google Scholar 

  9. Canman CE, Tange H-Y, Normolle DP et al. Variations in patterns of DNA damage induced in human colorectal tumor cells by 5-fluorodeoxyuridine: implications for mechanisms of resistance and cytotoxicity. Proc Natl Acad Sci 1992; 89:10474–10478.

    Article  PubMed  CAS  Google Scholar 

  10. ** Z, El-Deiry W. Overview of cell death signaling pathways. Cancer Biology and Therapy 2005; 4:139–163.

    Article  PubMed  CAS  Google Scholar 

  11. Enari M, Sakahira H, Yokoyama H et al. A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD. Nature. 1998; 391:43–50.

    Article  PubMed  CAS  Google Scholar 

  12. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity activation and inhibition. Biochem J 2004; 384:201–232.

    Article  PubMed  CAS  Google Scholar 

  13. Thornberry NA, Bull HG, Calaycay JR et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 1992; 356:768–774.

    Article  PubMed  CAS  Google Scholar 

  14. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 2004; 117:561–574.

    Article  PubMed  CAS  Google Scholar 

  15. Ahn E-Y, Pan G, Vickers SM et al. IFN-γ upregulates apoptosis-related molecules and enhances FAS-mediated apoptosis in human cholangiocarcinoma. Intern J Cancer 2002; 100:445–451.

    Article  CAS  Google Scholar 

  16. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Op Cell Biol 2003; 15:725–731.

    Article  PubMed  CAS  Google Scholar 

  17. Boatright KM, Renatus M, Scott FL et al. A unified model for apical caspase activation. Mol Cell 2003; 11:529–541.

    Article  PubMed  CAS  Google Scholar 

  18. Leung BP, Culshaw S, Gracie JA et al. A role for IL-18 in neutrophil activation. J Immunol 2001; 167:2879–2886.

    PubMed  CAS  Google Scholar 

  19. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 2002; 10:417–426.

    Article  PubMed  CAS  Google Scholar 

  20. Thornberry NA, Rano TA, Peterson EP et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J Biol Chem 1997; 272:17907–17911.

    Article  PubMed  CAS  Google Scholar 

  21. Schweizer A, Briand C, Grutter MG. Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem 2003; 278:42441–42447.

    Article  PubMed  CAS  Google Scholar 

  22. Hofmann K, Bucher P, Tschopp J. The CARD domain: a new apoptotic signalling motif. Trends Biochem Sci 1997; 22:155–156.

    Article  PubMed  CAS  Google Scholar 

  23. Thome M, Hofmann K, Burns K et al. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Curr Biol 1998; 8:885–888.

    Article  PubMed  CAS  Google Scholar 

  24. Weber CH, Vincenz C. The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 2001; 26:475–481.

    Article  PubMed  CAS  Google Scholar 

  25. Feeney B, Clark AC. Reassembly of active caspase-3 is facilitated by the propeptide. J Biol Chem 2005; 280:39772–39785.

    Article  PubMed  CAS  Google Scholar 

  26. Denault J-B, Salvesen GS. Human caspase-7 activity and regulation by its N-terminal peptide. J Biol Chem 2003; 278:34042–34050.

    Article  PubMed  CAS  Google Scholar 

  27. Meergans T, Hildebrandt A-K, Horak D et al. The short prodomain influences caspase-3 activation in HeLa cells. Biochem J 2000; 349:135–140.

    Article  PubMed  CAS  Google Scholar 

  28. Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death and Differentiation 2002; 9:1046–1056.

    Article  PubMed  CAS  Google Scholar 

  29. Muzio M, Stockwell BR, Stennicke H et al. An induced proximity model for capase-8 activation. J Biol Chem 1998; 273:2926–2930.

    Article  PubMed  CAS  Google Scholar 

  30. Pop C, Timmer J, Sperandio S et al. The apoptosome activates caspase-9 by dimerization. Mol Cell 2006; 22:269–275.

    Article  PubMed  CAS  Google Scholar 

  31. Boatright KM, Renatus M, Scott FL et al. A unified model for apical caspase activation. Mol Cell 2003; 11:529–541.

    Article  PubMed  CAS  Google Scholar 

  32. Renatus M, Stennicke HR, Scott FL et al. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci 2001; 98:14250–14255.

    Article  PubMed  CAS  Google Scholar 

  33. Li H, Bergeron L, Cryns V et al. Activation of caspase-2 in apoptosis. J Biol Chem 1997; 272:21010–21017.

    Article  PubMed  CAS  Google Scholar 

  34. Baliga BC, Read SH, Kumar S. The biochemical mechanism of caspase-2 activation. Cell Death and Differentiation. 2004; 11:1234–1241.

    Article  PubMed  CAS  Google Scholar 

  35. Launay S, Hermine O, Fontenay M et al. Vital functions for lethal caspases. Oncogene 2005; 24:5137–5148.

    Article  PubMed  CAS  Google Scholar 

  36. Bose K, Clark AC. Dimeric procaspase-3 unfolds via a four-state equilibrium process. Biochemistry 2001; 40:14236–14242.

    Article  PubMed  CAS  Google Scholar 

  37. Bose K, Clark AC. pH effects on the stability and dimerization of procaspase-3. Protein Sci 2005; 14:24–36.

    Article  PubMed  CAS  Google Scholar 

  38. Matsuyama S, Llopis J, Deveraux QL et al. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2000; 2:318–325.

    Article  PubMed  CAS  Google Scholar 

  39. Bose K, Pop C, Feeney B et al. An uncleavable procaspase-3 mutant has a lower catalytic efficiency but an active site similar to that of mature caspase-3. Biochemistry 2003; 42:12298–12310.

    Article  PubMed  CAS  Google Scholar 

  40. Mittl PRE, DiMarco S, Krebs JF et al. Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-asp-val-ala-asp fluoromethyl ketone. J Biol Chem 1997; 272:6539–6547.

    Article  PubMed  CAS  Google Scholar 

  41. Ganesan R, Mittl PRE, Jelakovic S et al. Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis. J Mol Biol 2006; 359:1378–1388.

    Article  PubMed  CAS  Google Scholar 

  42. Richardson JS, Richardson DC. Natural β—sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci 2002; 99:2754–2759.

    Article  PubMed  CAS  Google Scholar 

  43. Scheer JM, Romanowski MJ, Wells JA. A common allosteric site and mechanism in caspases. Proc Natl Acad Sci 2006; 103:7595–7600.

    Article  PubMed  CAS  Google Scholar 

  44. Blanchard H, Kodandapani L, Mittl PRE et al. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure 1999; 7:1125–1133.

    Article  PubMed  CAS  Google Scholar 

  45. Chai J, Wu Q, Shiozaki E et al. Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding. Cell 2001; 107:399–407.

    Article  PubMed  CAS  Google Scholar 

  46. Riedl SJ, Fuentes-Prior P, Renatus M et al. Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci 2001; 98:14790–14795.

    Article  PubMed  CAS  Google Scholar 

  47. Wilson KP, Black J-AF, Thomson JA et al. Structure and mechanism of interleukin-1β converting enzyme. Nature 1994; 370:270–275.

    Article  PubMed  CAS  Google Scholar 

  48. Romanowski MJ, Scheer JM, O’Brien T et al. Crystal structures of ligand-free and malonate-bound human caspase-1: implications for the mechanism of substrate binding. Structure 2004; 12:1361–1371.

    Article  PubMed  CAS  Google Scholar 

  49. Hardy JA, Lam J, Nguyen JT et al. Discovery of an allosteric site in the caspases. Proc Natl Acad Sci 2004; 101:12461–12466.

    Article  PubMed  CAS  Google Scholar 

  50. Walters J, Pop C, Scott FL et al. A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biophys J 2009; 424:335–345.

    CAS  Google Scholar 

  51. Schipper JL, MacKenzie SH, Sharma A, Clark AC. A bifunctional allosteric site in the dimer interface of procaspase-3. Biophys Chem 2011; 159:100–109.

    Article  PubMed  CAS  Google Scholar 

  52. Wolan DW, Zorn JA, Gray DC, Wells JA. Small molecule activators of a proenzyme. Science 2009; 326:853–858

    Article  PubMed  CAS  Google Scholar 

  53. Peterson QP, Goode DR, West DC, Ramsey KN, Lee JJ, Hergenrother PJ. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J Mol Biol 2009; 388:144–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Clay Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

MacKenzie, S.H., Clark, A.C. (2012). Death by Caspase Dimerization. In: Matthews, J.M. (eds) Protein Dimerization and Oligomerization in Biology. Advances in Experimental Medicine and Biology, vol 747. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3229-6_4

Download citation

Publish with us

Policies and ethics

Navigation