Axonal Transport

  • Reference work entry
Neuroscience in the 21st Century

Abstract

Axons are long slender cylindrical projections of neurons that enable these cells to communicate directly with other cells in the body over long distances, up to a meter or more in large animals. Remarkably, however, most axonal components originate in the nerve cell body, at one end of the axon, and must be shipped out along the axon by mechanisms of intracellular motility. In addition, signals from the axon and its environment must be conveyed back to the nerve cell body to modulate the nature and composition of the outbound traffic. The outward movement from the cell body toward the axon tip is called anterograde transport and the movement in the opposite direction, back toward the cell body, is called retrograde transport. This bidirectional transport, known collectively as axonal transport, is not fundamentally different from the pathways of macromolecular and membrane traffic found in other parts of the neuron, or indeed in any eukaryotic cell, but it is unique for the volume and scale of the traffic required to maintain these long processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADP:

Adenosine Diphosphate

ATP:

Adenosine Triphosphate

Erk:

Extracellular Signal Regulated Kinase

GDP:

Guanosine Diphosphate

GFP:

Green Fluorescent Protein

GTP:

Guanosine Triphosphate

JNK:

c-Jun N-Terminal Kinase

mRNA:

Messenger RNA

NGF:

Nerve Growth Factor

NLS:

Nuclear Localization Signal

RNA:

Ribonucleic Acid

RNP:

Ribonucleoprotein Particle

SCa:

Slow Component a

SCb:

Slow Component b

Trk:

Tyrosine Receptor Kinase

ZBP:

Zipcode-Binding Protein

Further Reading

  • Abe N, Cavalli V (2008) Nerve injury signaling. Curr Opin Neurobiol 18:276–283

    Article  PubMed  CAS  Google Scholar 

  • Alberts B et al (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Allen RD et al (1982) Fast axonal transport in squid giant axon. Science 218:1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Metuzals J, Tasaki I, Brady ST, Gilbert SP (1990) Fast axonal transport in the squid giant axon. In: Sanger JM, Sanger JW (eds) Cell motility and the cytoskeleton 17:367, Video Track 20, Video Supplement2: Microtubule-based motility

    Google Scholar 

  • Barkus RV et al (2008) Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Mol Biol Cell 19:274–283

    Article  PubMed  CAS  Google Scholar 

  • Brady ST, Lasek RJ (1982) Axonal transport: a cell-biological method for studying proteins that associate with the cytoskeleton. Methods Cell Biol 25:365–398

    Article  PubMed  CAS  Google Scholar 

  • Brady ST et al (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218:1129–1131

    Article  PubMed  CAS  Google Scholar 

  • Brown A (2003) Axonal transport of membranous and non-membranous cargoes: a unified perspective. J Cell Biol 160(6):817–821

    Article  PubMed  CAS  Google Scholar 

  • Cai Q, Sheng ZH (2009a) Molecular motors and synaptic assembly. Neuroscientist 15:78–89

    PubMed  CAS  Google Scholar 

  • Cai Q, Sheng ZH (2009b) Moving or stop** mitochondria: miro as a traffic cop by sensing calcium (previews). Neuron 61:493–496

    Article  PubMed  CAS  Google Scholar 

  • Cai Q et al (2007) Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci 27:7284–7296

    Article  PubMed  CAS  Google Scholar 

  • Carpenter S (1968) Proximal axonal enlargement in motor neuron disease. Neurology 18:841–851

    Article  PubMed  CAS  Google Scholar 

  • Cavalli V et al (2005) Sunday Driver links axonal transport to damage signaling. J Cell Biol 168:775–787

    Article  PubMed  CAS  Google Scholar 

  • Cosker et al (2008) Action in the axon: generation and transport of signaling endosomes. Curr Opin Neurobiol 18: 270–275

    Google Scholar 

  • De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173

    Article  PubMed  Google Scholar 

  • Donnelly CJ et al (2010) Subcellular communication through RNA transport and localized protein synthesis. Traffic 11:1498–1505

    Article  PubMed  CAS  Google Scholar 

  • Duncan JE, Goldstein LS (2006) The genetics of axonal transport and axonal transport disorders. PLoS Genet 2:e124

    Article  PubMed  Google Scholar 

  • Goldstein AY et al (2008) Axonal transport and the delivery of pre-synaptic components. Curr Opin Neurobiol 18:495–503

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94:129–142

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N et al (1990) Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J Cell Biol 111:1027–1037

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    Article  PubMed  CAS  Google Scholar 

  • Hisanaga S, Hirokawa N (1988) Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing. J Mol Biol 202:297–305

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PN, Griffin JW, Gold BG, Price DL (1985) Slowing of neurofilament transprot and the radial growth of develeo** nerve fibres. J Neurosci 5:2920–2929

    Google Scholar 

  • Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi D et al (2005) APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr Biol 15:2137–2141

    Google Scholar 

  • Ibáñez CF (2007) Message in a bottle: long-range retrograde signaling in the nervous system. Trends Cell Biol 17:519–528

    Article  PubMed  Google Scholar 

  • Kandel ER et al (2000) Principles of neural science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Koehnle TJ, Brown A (1999) Slow axonal transport of neurofilament protein in cultured neurons. J Cell Biol 144:447–458

    Article  PubMed  CAS  Google Scholar 

  • Lasek RJ (1986) Polymer sliding in axons. J Cell Sci 5:161–179, Suppl

    CAS  Google Scholar 

  • Lodish H et al (2000) Molecular cell biology, 4th edn. WH Freeman, New York

    Google Scholar 

  • Lodish H et al (2008) Molecular cell biology, 6th edn. WH Freeman, New York

    Google Scholar 

  • Misgeld T et al (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4:559–561

    Article  PubMed  CAS  Google Scholar 

  • Morfini GA et al (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29:12776–12786

    Article  PubMed  CAS  Google Scholar 

  • Ochs S (1981) Characterization of fast orthograde transport. Neurosci Res Program Bull 20:19–31

    PubMed  CAS  Google Scholar 

  • Perkins GA et al (2008) Electron tomographic analysis of cytoskeletal cross-bridges in the paranodal region of the node of Ranvier in peripheral nerves. J Struct Biol 161:469–480

    Article  PubMed  CAS  Google Scholar 

  • Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL (2010) Retrograde axonal transport: pathways to cell death? Trends Neurosci 33:335–344

    Article  PubMed  CAS  Google Scholar 

  • Pilling AD et al (2006) Kinesis-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068

    Article  PubMed  CAS  Google Scholar 

  • Roy S et al (2007) Rapid intermittent cotransport of slow component b proteins. J Neurosci 27:3131–3138

    Article  PubMed  CAS  Google Scholar 

  • Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95

    Article  PubMed  CAS  Google Scholar 

  • Vuppalanchi D, Willis DE, Twiss JL (2009) Regulation of mRNA transport and translation in Axons. Results Probl Cell Differ 48:193–224

    PubMed  CAS  Google Scholar 

  • Wang L, Brown A (2010) A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport. Molecular Neurodegeneration 2:52

    Article  Google Scholar 

  • Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107:315–395

    Article  PubMed  CAS  Google Scholar 

  • Weiss DG, Seitz-Tutter D, Langford G (1990) Motility in extruded axoplasm. In: Sanger JM, Sanger JW (eds) Cell motility and the cytoskeleton 17:367368, Video Track 21, Video Supplement 2: Microtubule-based motility

    Google Scholar 

  • **ao SH, Jan LY (2009) A gate keeper for axonal transport. Cell 136:996–998

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Brown Ph.D. .

Editor information

Editors and Affiliations

Electronic supplementary material

Video 1

MOV file: 3421 kB

Video 2

MOV file: 2372 kB

Video 3

MOV file: 2738 kB

Video 4

MOV file: 3480 kB

Video 5

MOV file: 5729 kB

Video 6

MOV file: 4934 kB

Video 7

MOV file: 2439 kB

Video 8

MOV file: 3823 kB

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

Brown, A. (2013). Axonal Transport. In: Pfaff, D.W. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1997-6_14

Download citation

Publish with us

Policies and ethics

Navigation