Hydrophobic Polymers of Pharmaceutical Significance

  • Chapter
  • First Online:
Fundamentals and Applications of Controlled Release Drug Delivery

Abstract

Over the recent years, the use of hydrophobic polymers for drug delivery applications has dramatically increased. These materials offer particular promise for controlled/sustained-drug release, thereby enhancing the pharmacological effects of the drug. These controlled/sustained release drug delivery systems can result in considerable clinical and economic advantages. The physicochemical properties of the hydrophobic polymers and the design of the drug delivery system both affect the mechanism by which a drug diffuses from the polymeric system. This chapter provides an overview of the different types of pharmaceutical hydrophobic polymers, drug delivery applications of these polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbaspour M, Sadeghi R, Garekani HA (2005) Preparation and characterization of ibuprofen pellets based on Eudragit RSPO and RLPO or their combination. Int J Pharm 303:88–94

    PubMed  CAS  Google Scholar 

  2. Abbaspour M, Sadeghi R, Garekani HA (2007) Thermal treating as a tool to produce plastic pellets based on Eudragit RSPO and RLPO aimed for tableting. Eur J Pharm Biopharm 67:260–267

    PubMed  CAS  Google Scholar 

  3. Akhgari A, Sadeghi F, Garekani HA (2006) Combination of time-dependent and pH-dependent polymethacrylates as a single coating formulation for colonic delivery of indomethacin pellets. Int J Pharm 320:137–142

    PubMed  CAS  Google Scholar 

  4. Amighi K, Moës AJ (1996) Influence of plasticizer concentration and storage conditions on the drug release rate from Eudragit® RS 30 D film-coated sustained-release theophylline pellets. Eur J Pharm Biopharm 42(1):29–35

    CAS  Google Scholar 

  5. Beeley NR, Stewart JM, Tano R, Lawin LR, Chappa RA, Qiu G, Anderson AB, de Juan E, Varner SE (2005) Development, implantation, in vivo elution, and retrieval of a biocompatible, sustained release subretinal drug delivery system. J Biomed Mater Res 76A(4):690–698

    Google Scholar 

  6. Bodmeier R, Paeratakul O (1994) Mechanical properties of dry and wet cellulosic and acrylic films prepared from aqueous colloidal polymer dispersions used in the coating of solid dosage forms. Pharm Res 11(6):882–888

    PubMed  CAS  Google Scholar 

  7. Borhani H, Rahimy MH, Peymann GA (1993) Sustained release of 5-FU from biodegradable-matrix delivery for intraocular application: in vitro and in vivo evaluation. Invest Ophthalmol Vis Sci 34:1488 (Suppl.)

    Google Scholar 

  8. Boyapally H, Nukala RK, Douroumis D (2009) Development and release mechanism of diltiazem HCl prolonged release matrix tablets. Drug Deliv 16(2):67–74

    PubMed  CAS  Google Scholar 

  9. Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107–117

    PubMed  CAS  Google Scholar 

  10. Buckton G, Ganderton D, Shah R (1988) In vitro dissolution of some commercially available sustained-release theophylline preparations. Int J Pharm 42:35–39

    CAS  Google Scholar 

  11. Bruce LD, Shah NH, Malick AW, Infeld MH, McGinity JW (2005) Properties of hot-melt extruded tablet formulations for the colonic delivery of 5-aminosalicylic acid. Eur J Pharm Biopharm 59:85–97

    PubMed  CAS  Google Scholar 

  12. Brinker KC (1977). EVA Copolymers: raw materials for hot melt pressure-sensitive adhesives. Adhes Age 20(8):38–40

    Google Scholar 

  13. Carcaboso AM, Chiappetta DA, Höcht C, Blake MG, Boccia MM, Baratti CM, Sosnik A (2008) In vitro/in vivo characterization of melt-molded gabapentin-loaded poly(epsilon-caprolactone) implants for sustained release in animal studies. Eur J Pharm Biopharm 70:666–673

    PubMed  CAS  Google Scholar 

  14. Chenga L, Guo S, Wub W (2009) Characterization and in vitro release of praziquantel from poly(ɛ-caprolactone) implants. Int J Pharm 377:112–119

    Google Scholar 

  15. Chivate AA, Poddar SS (2008) Designing, optimization and characterization of sustained release matrix pellets prepared by extrusion spheronization containing mixtures of proteolyrtic enzymes. Curr Drug Deliv 5:265–274

    PubMed  CAS  Google Scholar 

  16. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK (2007) Pharmaceutical applications of hot-melt extrusion: Part I. Drug Dev Ind Pharm 33:909–926

    PubMed  CAS  Google Scholar 

  17. Costantini LC, Kleppner SR, McDonough J, Azar MR, Patel R (2004) Implantable technology for long-term delivery of nalmefene for treatment of alcoholism. Int J Pharm 283:35–44

    PubMed  CAS  Google Scholar 

  18. Cui Y, Zhang Y, Tang X (2008) In vitro and in vivo evaluation of ofloxacin sustained release pellets. Int J Pharm 360:47–52

    PubMed  CAS  Google Scholar 

  19. Dahiya S, Pathak K, Sharma R (2008) Development of extended release coevaporates and coprecipitates of promethazine HCl with acrylic polymers: formulation considerations. Chem Pharm Bull 56(4):504–508

    PubMed  CAS  Google Scholar 

  20. Das GS, Rao GHR, Wilson RF, Chandy T (2000) Colchicine encapsulation within poly (ethylene glycol)-coated poly (lactic acid)/poly (epsiloncaprolactone) microspheres-controlled release studies. Drug Deliv 7:129–138

    PubMed  CAS  Google Scholar 

  21. Dashevsky A, Wagner K, Kolterb K, Bodmeier R (2005) Physicochemical and release properties of pellets coated with Kollicoat® SR 30 D, a new aqueous polyvinyl acetate dispersion for extended release. Int J Pharm 290:15–23

    PubMed  CAS  Google Scholar 

  22. Dong X, Shi W, Yuan G, **e L, Wang S, Lin P (2006) Intravitreal implantation of the biodegradable cyclosporine: a drug delivery system for chronic uveitis. Graefes Arch Clin Exp Ophthalmol 244:492–497

    PubMed  CAS  Google Scholar 

  23. Duda A, Biela T, Libiszowski J, Penscek S, Dubois P, Mecerreyes D, Jerome R (1997) Block and random copolymers of ɛ-caprolactone. Polym Degrad Stab 59:215–222

    Google Scholar 

  24. El-Malah Y, Nazzal S (2008) Effect of Eudragit® RS 30D and talc powder on verapamil hydrochloride release from beads coated with drug layered matrices. AAPS PharmSciTech 9(1):75–83

    PubMed  CAS  Google Scholar 

  25. El-Malah Y, Nazzal S (2008) Novel use of Eudragit® NE 30D/Eudragit® L 30D-55 blends as functional coating materials in time-delayed drug release applications. Int J Pharm 357:219–227

    PubMed  CAS  Google Scholar 

  26. Fukumori Y (1994) Coating of multiparticulates using polymeric dispersion. In: Ghebre-Sellassie I (ed) Multiparticulate oral drug delivery-drugs and pharmaceutical science, vol 65. Marcel Dekker, New York, NY, pp 79–117

    Google Scholar 

  27. Guo S, Wang Z, Zhang Y, Lei L, Shi J, Chen K, Yu Z (2010) In vivo evaluation of 5-Fluorouracil containing self-expandable nitinol stent in rabbits: efficiency in long-term local drug delivery. J Pharm Sci 99:3009–3018, (www.interscience.wiley.com). DOI 10.1002/jps.22066

    PubMed  CAS  Google Scholar 

  28. Guthmann C, Lipp R, Wagner T, Kranz H (2007) Development of a multiple unit pellet formulation for a weakly basic drug. Drug Dev Ind Pharm 33:341–349

    PubMed  CAS  Google Scholar 

  29. Ha JC, Kim SY, Lee YM (1999) Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (Pluronic)/Poly (ɛ-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. I. Preparation and characterization. J Control Release 62:381–392

    PubMed  CAS  Google Scholar 

  30. Haik-Creguer KL, Dunbar GL, Sabel BA, Schroeder U (1998) Small drug sample fabrication of controlled release polymers using the microextrusion method. J Neurosci 80:37–40

    CAS  Google Scholar 

  31. Jiang G, Jones IA, Rudd CD, Walker GS (2003) Modelling the post treatment of model implants prepared by in situ polymerized poly (ɛ-caprolactone) using a BF3-glycerol catalyst. Polymer 44:1809–1818

    CAS  Google Scholar 

  32. Kagayama A, Mustafa R, Akaho E, Khawam N, Truelove J, Hussain A (1984) Mechanism of diffusion of compounds through ethylene vinyl acetate copolymers. I. Kinetics of diffusion of 1-chloro-4-nitrobenzene, 3,4-dimethylphenol and 4-hexylresorcinol. Int J Pharm 18:247–258

    CAS  Google Scholar 

  33. Karasulu HY, Ertan G, Köse T (2000) Modelling of theophylline release from different geometrically erodible tablets. Eur J Pharm Biopharm 49:177–182

    PubMed  CAS  Google Scholar 

  34. Kato A, Kimura H, Okabe K, Okabe J, Kunou N, Ogura Y (2004) Feasibility of drug delivery to the posterior pole of the rabbit eye with an episcleral implant. Invest Ophthalmol Vis Sci 45(1):238–244

    PubMed  Google Scholar 

  35. Kaur K, Kim K (2009) Studies of chitosan/organic acid/Eud RS/RL-coated system for colonic delivery. Int J Pharm 366:140–148

    PubMed  CAS  Google Scholar 

  36. Kim MS, Seo KS, Hyun H, Khang G, Cho SH (2006) Controlled release of bovine serum albumin using MPEG-PCL diblock copolymers as implantable protein carriers. J Appl Polym Sci 102:1561–1567

    CAS  Google Scholar 

  37. Kleppner SR, Patel R, McDonough J, Costantini LC (2006) In-vitro and in-vivo characterization of a buprenorphine delivery system. J Pharm Pharmacol 58:295–302

    PubMed  CAS  Google Scholar 

  38. Kranz H, Wagner T (2006) Effects of formulation and process variables on the release of a weakly basic drug from single unit extended release formulation. Eur J Pharm Biopharm 62:70–76

    PubMed  CAS  Google Scholar 

  39. Kucera SA, McGinity JW (2007) Use of proteins to minimize the physical aging of Eudragit® sustained release films. Drug Dev Ind Pharm 33:717–726

    PubMed  CAS  Google Scholar 

  40. Kucera SA, Stimpel D, Shah NH, Mallick W, Infeld MH, McGinity JW (2008) Influence of fumed silicon dioxide on the stabilization of Eudragit® RS/RL 30D film-coated theophylline pellets. Pharm Dev Technol 13:245–253

    PubMed  CAS  Google Scholar 

  41. Kuksal A, Tiwary AK, Jain NK, Jain S (2006) Formulation and in vitro, in vivo evaluation of extended-release matrix tablet of zidovudine: influence of combination of hydrophilic and hydrophobic matrix formers. AAPS PharmSciTech 7(1):E1 (http://aapspharmscitech.org)

    PubMed  Google Scholar 

  42. Lai HL, Pitt K, Craig DQM (2010) Characterization of the thermal properties of ethylcellulose using differential scanning and quasi-isothermal calorimetric approaches. Int J Pharm 386:178–184

    PubMed  CAS  Google Scholar 

  43. Langer R, Brem H, Tapper D (1981) Biocompatibility of polymeric delivery systems for macromolecules. J Biomed Mater Res 15:167–277

    Google Scholar 

  44. Lee EK, Londsdale HK, Baker RW (1985) Transport of steroids in poly(etherurethane) and poly(ethylene vinyl acetate) membranes. J Memb Sci 24:125–143

    Google Scholar 

  45. Lehmann K (1997) O., R. Chemistry and application properties of polymethacrylate coating systems. In: McGinity JW (ed) Aqueous polymeric coatings for pharmaceutical dosage forms. Marcel Dekker, New York, pp 101–176

    Google Scholar 

  46. Li-Fang F, Wei H, Yong-Zhen C, Bai X, Qing D, Feng W, Min Q, De-Ying C (2009) Studies of chitosan/Kollicoat SR 30D film-coated tablets for colonic drug delivery. Int J Pharm 375:8–15

    Google Scholar 

  47. Lin W, Flanagan D, Linhardt RJ (1994) Accelerated degradation of polycaprolactone by orgainic amines. Pharm Res 11:1030–1034

    PubMed  CAS  Google Scholar 

  48. Lin M, Meng S, Zhong W, Li Z, Du Q, Tomasik P (2008) Novel biodegradable blend matrices for controlled drug release. J Pharm Sci 97(10):4240–4248

    PubMed  CAS  Google Scholar 

  49. Liu L, Li Y, Liu H, Fang Y (2004) Synthesis and characterization of chitosan-graft-polycaprolactone copolymers. Eur Polym J 40:2739–2744

    CAS  Google Scholar 

  50. Lopes CM, Manuel J, Lobo S, Costa P, Pinto JF (2006) Directly compressed mini matrix tablets containing ibuprofen: preparation and evaluation of sustained release. Drug Dev Ind Pharm 32:95–106

    PubMed  CAS  Google Scholar 

  51. Lordi N (1986) Sustained release dosage forms. In: Lachman L, Lierberman HA, Kanig JL (eds) The theory and practice of industrial pharmacy. Lea and Febiger, Pheladelphia, pp 430–478

    Google Scholar 

  52. Luo D, Woodrow-Mumford K, Belcheva N, Saltzman WM (1999) Controlled DNA delivery systems. Pharm Res 16(8):1300–1308

    PubMed  CAS  Google Scholar 

  53. Makhija SN, Vavia PR (2002) Once daily sustained release tablets of venlafaxine, a novel antidepressant. Eur J Pharm Biopharm 54:9–15

    PubMed  CAS  Google Scholar 

  54. Maejima T, McGinity JW (2001) Influence of additives on stabilizing drug release rates from pellets coated with acrylic polymers. Pharm Dev Technol 6(2):211–221

    PubMed  CAS  Google Scholar 

  55. Mehuys E, Vervaet C, Remon JP (2004) Hot-melt extruded ethylcellulose cylinders containing a HPMC-Gelucire® core for sustained drug delivery. J Control Release 94:273–280

    PubMed  CAS  Google Scholar 

  56. Mehuys E, Vervaet C, Gielen I, Van Bree H, Remon JP (2004) In vitro and in vivo evaluation of a matrix-in-cylinder system for sustained drug delivery. J Control Release 96:261–271

    PubMed  CAS  Google Scholar 

  57. Meng S, Zhong W, Chou LL, Wang Q, Liu ZJ, Du QG (2007) Phosphorylcholine end-capped poly ɛ-caprolactone: a novel biodegradable material with improved antiadsorption property. J Appl Polym Sci 103:989–997

    CAS  Google Scholar 

  58. Miyazaki S, Ishi K, Sugibayashi K, Morimoto Y, Takada M (1982) Antitumor effect of ethylene–vinyl acetate copolymer matrices containing 5-fluorouracil on ehrlich ascites carcinoma in mice. Chem Pharm Bull 30:3770–3775

    PubMed  CAS  Google Scholar 

  59. Omari DM, Sallam A, Abd-Elbary A, El-Samaligy M (2004) Lactic acid-induced modifications in films of Eudragit® RS and RL aqueous dispersions. Int J Pharm 274:85–96

    PubMed  CAS  Google Scholar 

  60. Özgüney I, Shuwisitkul D, Bodmeier R (2009) Development and characterization of extended release Kollidon® SR mini-matrices prepared by hot-melt extrusion. Eur J Pharm Biopharm 73:140–145

    PubMed  Google Scholar 

  61. Park H, Park K, Shalaby WSW (1993) Types of biodegradable hydrogels. In: Biodegradable hydrogels for drug delivery. Technomic, Lancaster, PA, pp 35–67

    Google Scholar 

  62. Park JH, Ye M, Park K (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10:146–161

    PubMed  CAS  Google Scholar 

  63. Patra CN, Kumar AB, Pandit HK, Singh SP, Devi MV (2007) Design and evaluation of sustained release bilayer tablets of propranolol hydrochloride. Acta Pharm 57:479–489

    PubMed  CAS  Google Scholar 

  64. Pearnchob N, Bodmeier R (2003) Dry powder coating of pellets with micronized Eudragit® RS for extended drug release. Pharm Res 20(12):1970–1976

    PubMed  CAS  Google Scholar 

  65. Pearnchob N, Bodmeier R (2003) Coating of pellets with micronized EC particles by a dry powder coating technique. Int J Pharm 268:1–11

    PubMed  CAS  Google Scholar 

  66. Pearnchob N, Bodmeier R (2003) Dry polymer powder coating and comparison with conventional liquid-based coatings for Eudragit® RS, ethylcellulose and shellac. Eur J Pharm Biopharm 56:363–369

    PubMed  CAS  Google Scholar 

  67. Pitt CG, Jeffcoat AR, Zweidinger RA, Schindler A (1979) Sustained drug delivery systems. I. The permeability of poly(ɛ-caprolactone), poly(DL-lactic acid) and their copolymers. J Biomed Mater Res 13:497–507

    PubMed  CAS  Google Scholar 

  68. Pitt CG, Gu Z (1987) Modification of the rates of the chain cleavage of polycaprolactone and related polyesters. J Control Release 19:283–292

    Google Scholar 

  69. Quinten T, Gonnissen Y, Adriaens E, De Beer T, Cnudde V, Masschaele B, Van Hoorebeke L, Siepmann J, Remon JP, Vervaet C (2009) Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-substituted hydroxypropylcellulose. Eur J Pharm Sci 37:207–216

    PubMed  CAS  Google Scholar 

  70. Quinten T, De Beer T, Vervaet C, Remon JP (2009) Evaluation of injection moulding as a pharmaceutical technology to produce matrix tablets. Eur J Pharm Biopharm 71:145–154

    PubMed  CAS  Google Scholar 

  71. Rekhi SR, Jambhekar SS (1995) Ethylcellulose – a polymer review. Drug Dev Ind Pharm 21(1):61–77

    CAS  Google Scholar 

  72. Rodreiguez L, Caputo O, Cini M, Cavallari C, Grecchi R (1993) In vitro release of theophylline from directly-compressed matrices containing methacrylic acid copolymers and/or dicalcium phosphate dihydrate. Farmaco 48(11):1597–1604

    Google Scholar 

  73. Rowe R, Sheskey P, Owen S (2006) Handbook of pharmaceutical excepients, 5th edn. Pharmaceutical Press/The American Pharmaceutical Association, London, UK/Washington, DC, pp 462–468

    Google Scholar 

  74. Sadeghi F, Ford JL, Rajabi-Siahboomi A (2003) The influence of drug type on the release profiles from Surelease-coated pellets. Int J Pharm 254:123–135

    PubMed  CAS  Google Scholar 

  75. Sahoo J, Murthy PN, Biswal S, Manik (2009) Formulation of sustained release dosage form of verapamil hydrochloride by solid dispersion technique using Eudragit® RLPO or Kollidon® SR. AAPS PharmSciTech 10(1):27–33

    PubMed  CAS  Google Scholar 

  76. Salyer IO, Kenyon AS (1971) Structure and property relationships in ethylene-vinyl acetate copolymers. J Polym Sci 9:3083–3103

    CAS  Google Scholar 

  77. Sam AP (1992) Controlled release contraceptive devices: a status report. J Control Release 22:35–46

    CAS  Google Scholar 

  78. Shastri PV (2002) Toxicology of polymers for implant contraceptives for women. Contraception 65:9–13

    PubMed  CAS  Google Scholar 

  79. Schilling SU, Bruce CD, Shah NH, Malick AW, McGinity JW (2008) Citric acid monohydrate as a release-modifying agent in melt extruded matrix tablets. Int J Pharm 361:158–168

    PubMed  CAS  Google Scholar 

  80. Semdé R, Amighi K, Devleeschouwer MJ, Moёs AJ (2000) Studies of pectin HM:Eudragit® RL:Eudragit® NE film-coating formulations intended for colonic drug delivery. Int J Pharm 197:181–192

    PubMed  Google Scholar 

  81. Siepmann F, Hoffmann A, Leclercp B, Carlin B, Siepmann J (2007) How to adjust desired drug release patterns from ethylcellulose-coated dosage forms. J Control Release 119:182–189

    PubMed  CAS  Google Scholar 

  82. Siepmann F, Muschert S, Leclercq B, Carlin B, Siepmann J (2008) How to improve the storage stability of aqueous polymeric film coatings. J Control Release 126:26–33

    PubMed  CAS  Google Scholar 

  83. Sun YM, Hsu SC, Lai JY (2001) Transport properties of ionic drugs in the ammonio methacrylate copolymer membranes. Pharm Res 18:304–310

    PubMed  CAS  Google Scholar 

  84. Sun H, Mei L, Song C, Cui X, Wang P (2006) Biodegradable implantable fluconazole delivery rods designed for the treatment of fungal osteomyelitis: Influence of gamma sterilizataion. J Biomed Mater Res A 77:632–638

    Google Scholar 

  85. Sungthongjeen S, Sriamornsak P, Puttipipatkhachorn S (2008) Design and evaluation of floating multi-layer coated tablets based on gas formation. Eur J Pharm Biopharm 69:255–263

    PubMed  CAS  Google Scholar 

  86. Tian L, Zhang Y, Tang X (2008) Sustained-release pellets prepared by combination of wax matrices and double-layer coatings for extremely water-soluble drugs. Drug Dev Ind Pharm 34:569–576

    PubMed  CAS  Google Scholar 

  87. van Laarhoven JAH, Kruft MAB, Vromans H (2002) Effect of supersaturation and crystallization phenomena on the release properties of a controlled release device based on EVA copolymer. J Control Release 82:309–317

    PubMed  Google Scholar 

  88. Varshosaz J, Faghihian H, Rastgoo K (2006) Preparation and characterization of metoprolol controlled-release solid dispersions. Drug Deliv 13:295–302

    PubMed  CAS  Google Scholar 

  89. Verhoeven E, Vervaet C, Remon JP (2006) Xanthan gum to tailor drug release of sustained-release ethylcellulkose mini-matrices prepared via hot-melt extrusion: in vitro and in vivo evaluation. Eur J Pharm Biopharm 63:320–330

    PubMed  CAS  Google Scholar 

  90. Verhoeven E, De Beer TRM, Van den Mooter G, Remon JP, Vervaet C (2008) Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion. Eur J Pharm Biopharm 69:312–319

    PubMed  CAS  Google Scholar 

  91. Verhoeven E, De Beer TRM, Schacht E, Van den Mooter G, Remon JP, Vervaet C (2009) Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethylcellulose mini-matrices produced by hot-melt extrusion: in vitro and in vivo evaluations. Eur J Pharm Biopharm 72:463–470

    PubMed  CAS  Google Scholar 

  92. Verhoeven E, Siepmann F, De Beer TRM, Van Loo D, Van den Mooter G, Remon JP, Vervaet C, Seipmann J, Vervaet C (2009) Modeling drug release from hot-melt extruded mini-matrices with constant and non-constant diffusivities. Eur J Pharm Biopharm 73:292–301

    PubMed  CAS  Google Scholar 

  93. Wagner KG, McGinity JW (2002) Influence of chloride ion exchange on the permeability and drug release of Eudragit® RS30D films. J Control Release 82:385–397

    PubMed  CAS  Google Scholar 

  94. Wei H, Li-Fang F, Bai X, Chun-Lei L, Qing D, Yong-Zhen C, De-Ying C (2009) An investigation into the characteristics of chitosan/Kollicoat SR30D free films for colonic drug delivery. Eur J Pharm Biopharm 72:266–274

    PubMed  Google Scholar 

  95. Wouessidjewe D (1997) Aqueous polymethacrylate dispersions as coating materials for sustained and enteric release systems. STP Pharm Sci 7(6):469–475

    CAS  Google Scholar 

  96. Wu C, McGinity JW (2000) Influence of relative humidity on the mechanical and drug release properties of theophylline pellets coated with an acrylic polymer containing methylparaben as a non-traditional plasticizer. Eur J Pharm Biopharm 50(2):277–284

    PubMed  CAS  Google Scholar 

  97. Wu C, McGinity JW (2001) Influence of ibuprofen as a solid-state plasticizer in Eudragit® RS 30 D on the physicochemical properties of coated beads. AAPS PharmSciTech 2:1–9

    CAS  Google Scholar 

  98. Jones DS, McLaughlin DMJ, McCoy CP, Gorman SP (2005) Physicochemical characterisation and biological characterisation of hydrogel-poly(epilson caprolactone) interpenetrating polymer networks as novel urinary biomaterials. Biomaterials 26(14): 1761–1770

    Google Scholar 

  99. Wu C, McGinity JW (2003) Influence of an enteric polymer on drug release rates of theophylline pellets coated with Eudragit® RS 30 D. Pharm Dev Technol 8(1):103–110

    PubMed  CAS  Google Scholar 

  100. Young CR, Koleng JJ, McGinity JW (2002) Production of spherical pellets by a hot-melt extrusion and spheronization process. Int J Pharm 242:87–92

    PubMed  CAS  Google Scholar 

  101. Zhang F, McGinity JW (2000) Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate). Drug Dev Ind Pharm 26(9):931–942

    PubMed  CAS  Google Scholar 

  102. Zheng W, Sauer D, McGinity JW (2005) Influence of hydroxyethylcellulose on the drug release properties of theophylline pellets coated with Eudragit® RS 30 D. Eur J Pharm Biopharm 59(1):147–154

    PubMed  CAS  Google Scholar 

  103. Zhu Y, Shah NH, Mallick AW, Infeld MI, McGinity JW (2002) Influence of thermal processing on the properties of chlorpheniramine maleate tablets containing an acrylic polymer. Pharm Dev Technol 7(4):481–489

    PubMed  CAS  Google Scholar 

  104. Zhu Y, Mehta KA, McGinity JW (2006) Influence of plasticizer level on the drug release from sustained release film coated and hot melt extruded dosage forms. Pharm Dev Technol 11:285–294

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer US

About this chapter

Cite this chapter

Abu-Diak, O.A., Andrews, G.P., Jones, D.S. (2012). Hydrophobic Polymers of Pharmaceutical Significance. In: Siepmann, J., Siegel, R., Rathbone, M. (eds) Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0881-9_3

Download citation

Publish with us

Policies and ethics

Navigation