Abstract

Safflower (Carthamus tinctorius L.) is an ancient crop with numerous past and present uses. Traditionally safflower was grown for its flowers, which were used as a fabric dye and for food coloring, flavoring, and medicinal purposes. Today, as a result of manipulation of well-characterized germplasm resources, it has become an important oil seed crop, bred for specialty niches through the development of healthier or more heat stable oil constituents, winter hardiness, and disease resistance. Molecular methodology has facilitated characterization of the world-wide diversity of safflower and identified geographical regions of similarity to assist breeders in the exploitation of available diversity. The development of molecular markers from expressed sequences should aid researchers in map** genes of importance and reducing population size and generations required for the development of new varieties by using marker-assisted selection. Sequencing technology has established relationships among species of Carthamus, further aiding in the exploitation of diversity within the secondary gene pool. A coordinated, collaborative effort among safflower researchers in the development of marker-assisted characterization of global diversity would further increase the utility of available germplasm resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadi MR, Omidi AH (1997) Study and determination of natural outcrossing in winter safflower (Carthamus tinctorius L.). Sesame Safflower Newslett 12:94–97

    Google Scholar 

  • Ashri A (1971) Evaluation of the world collection of safflower, Carthamus tinctorius L. I. Reaction to several diseases with morphological characters in Israel. Crop Sci 11:253–257

    Article  Google Scholar 

  • Ashri A (1974) Natural interspecific hybridization between cultivated safflower (Carthamus tinctorius) and the wild C. tenuis. Euphytica 23:385–386

    Article  Google Scholar 

  • Ashri A (1975) Evaluation of the grem plasm collection of safflower (Carthamus tinctorius L.) V. Distribution and regional divergence for morphological characters. Euphytica 24:651–659

    Article  Google Scholar 

  • Ashri A, Knowles PF (1960) Cytogenetics of safflower (Carthamus L.) species and their hybrids. Agron J 52(1):11–17

    Article  Google Scholar 

  • Ashri A, Zimmer DE, Urie AL, Cahaner A, Marani A (1974) Evaluation of the world collection of safflower, Carthamus tinctorius L. IV. Yield and yield components and their relationships. Crop Sci 14:799–802

    Article  Google Scholar 

  • Ashri A, Knowles PF, Urie AL, Zimmer DE, Cahaner A, Marani A (1977) Evaluation of the germ plasm collection of safflower, Carthamus tinctorius. III. Oil content and Iodine value and their associations with other characters. Econ Bot 31:38–46

    Article  CAS  Google Scholar 

  • Bassiri A (1977) Identification and polymorphism of cultivars and wild ecotypes of safflower based on isozyme patterns. Euphytica 26:709–719

    Article  CAS  Google Scholar 

  • Bergman J, Flynn C (2009) Evaluation of oilseed crops for biodiesel production and quality in Montana. (Final Report to the Board of Research and Commercialization Technology) Helena, MT. Grant agreement no. #07-06

    Google Scholar 

  • Bergman JW, Riveland NR, Flynn CR, Carlson GR, Wichman DM, Kephart KD (2007) Registration of ‘Nutrasaff’ safflower. J Plant Registr 1(2):129–130

    Article  Google Scholar 

  • Bowles VG, Mayerhofer R, Davis C, Good AG, Hall JC (2010) A phylogenetic investigation of Carthamus combining sequence and microsatellite data. Plant Syst Evol 287:85–97

    Article  CAS  Google Scholar 

  • Butler GD, Werner EG, Levin MD (1966) Native bees associated with safflower in South-central Arizona. Kansas Entomological Society Journal 39(3):434–436

    Article  CAS  Google Scholar 

  • Carapetian J, Estilai A (1997) Genetics of isozyme coding genes in safflower. In: Corleto A, Mundel H-H (eds) Proceedings of the fourth international safflower conference, Bari, 2–7 June 1997, pp 235–237

    Google Scholar 

  • Chapman MA, Burke JM (2007) DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biol 7:60

    Article  PubMed  Google Scholar 

  • Chapman MA, Hvala J, Strever S, Matvienko M, Kozik A, Michelmore RW, Tang S, Knapp SJ, Burke JM (2009) Development, polymorphism, and cross-taxon utility of EST-SSR markers from safflower (Carthamus tinctorius L.). Theor Appl Genet 120:85–91

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Hvala J, Strever J, Burke JM (2010) Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a Near Eastern origin and five centers of diversity. Am J Bot 97(5):1–10

    Article  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Hegde DM (2005) Development of core collection in safflower (Carthamus tinctorius L.) germplasm. Genet Resour Crop Evol 52:821–830

    Google Scholar 

  • Elfadl E, Reinbrecht C, Claupein W (2010) Evaluation of phenotypic variation in a worldwide germplasm collection of safflower (Carthamus tinctorius L.) grown under organic farming conditions in Germany. Genet Resour Crop Evol 57:155–170

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • FAO (2010) Food and Agriculture organization of the United Nations. http://faostat.foa.org/site/339/default.aspx

  • Garnatje T, Garcia S, Vilatersana R, Valles J (2006) Genome size variation in the genus Carthamus (Asteraceae, Carduceae): systematic implications and additive changes during allopolyploidization. Ann Bot 97(3):461–467

    Article  PubMed  CAS  Google Scholar 

  • Gaudeul M, Till-Bottraud I, Barjon F, Manel S (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92:508–518

    Article  PubMed  CAS  Google Scholar 

  • Greene SL, Kisha TJ, Dzyubenko N (2008) Conserving alfalfa wild relatives: is past introgression with Russian varieties evident today? Crop Sci 48:1853–1864

    Article  CAS  Google Scholar 

  • Hamdan YAS, Pérez-Vich B, Fernández-Martínez JM, Velasco L (2009) Novel safflower germplasm with increased saturated fatty acid content. Crop Sci 49:127–132

    Article  CAS  Google Scholar 

  • Hanelt P (1961) Systemic study of the genus Catharnus L. – a monographic review. Ph.D. Thesis, Martin-Luther University, Halle-Witterburg. In: Weiss EA (ed) (2000) Safflower. In: Oilseed crops. Blackwell Science, Oxford, pp 93–129

    Google Scholar 

  • Hasselquist F (1762) Reise nach palastina. Rostock, USSR. In: Weiss EA (ed) (2000) Safflower. In: Oilseed crops. Blackwell Science, Oxford, pp 93–129

    Google Scholar 

  • Heaton TC, Klisiewicz JM (1981) A disease resistant safflower alloploid from Carthamus tinctorius L.  ×  C. lanatus L. J Plant Sci 61:219–224

    Google Scholar 

  • Holdregger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807

    Article  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genoty**. Plant Mol Biol Rep 21:289–294

    Article  CAS  Google Scholar 

  • Jaradat AA, Shalid M (2006) Patterns of phenotypic variation in a germplasm collection of Carthamus tinctorius L. from the Middle East. Genet Resour Crop Evol 53:225–244

    Article  Google Scholar 

  • Johnson RC, Li D (2008) Registration of WSRC01, WSRC02, and WSRC03 winter-hardy safflower germplasm. J Plant Registr 2(2):140–142

    Article  Google Scholar 

  • Johnson RC, Stout DM, Bradley VL (1993) The U.S. collection: a rich source of safflower germplasm. In: Dajue L, Yuanzhou H (eds) Proceedings of the third international safflower conference, Bei**g Botanical Garden, 18 June 1993. Institute of Botany, Chinese Academy of Sciences, Bei**g, pp 202-208

    Google Scholar 

  • Johnson RC, Bergman JW, Flynn CR (1999) Oil and meal characteristics of core and non-core safflower accessions from the USDA collection. Genet Resour Crop Evol 46:611–618

    Article  Google Scholar 

  • Johnson RC, Ghorpade PB, Bradley VL (2001) Evaluation of the USDA core safflower collection for seven quantitative traits. In: Proceedings of the fifth international safflower conference, Williston, ND, 23–27 July 2001

    Google Scholar 

  • Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736

    Article  CAS  Google Scholar 

  • Keimer L (1924) Die Gartenpflanzen in Alten Agypten. Hamburg, Germany. Cited in: Weiss EA (ed) (2000) Safflower. In: Oilseed crops. Blackwell Science, Oxford, pp 93–130

    Google Scholar 

  • Kisha TJ, Ryder O (2006) The role of bioinformatics in coordinating conservation efforts. In: de Vicente MC, Andersson MS (eds) DNA banks – providing novel options for genebanks? Topical reviews in agricultural biodiversity. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Knowles PF (1968) Registration of ‘IC-1’ safflower. Crop Sci 8:641

    Article  Google Scholar 

  • Knowles PF (1969) Centers of plant diversity and conservation of crop germ plasm: Safflower. Econ Bot 23(4):324–329

    Article  Google Scholar 

  • Knowles PF (1989) Safflower. In: Röbbelen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, pp 363–374

    Google Scholar 

  • Lacey DJ, Wellner N, Beaudoin F, Napier JA, Shewry PR (1998) Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochem J 334:469–477

    PubMed  CAS  Google Scholar 

  • Li D, Mündel HH (1996) Safflower. Carthamus tinctorius L. Promoting the conservation and use of underutilized and neglected crops. 7. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Mariette S, Le Corre V, Austerlitz F, Kremer A (2002) Sampling within the genome for measuring within population diversity: trade-off s between markers. Mol Ecol 11:1145–1156

    Article  PubMed  CAS  Google Scholar 

  • McPherson MA, Good AG, Topinka AKC, Hall LM (2004) Theoretical hybridization potential of transgenic safflower (Carthamus tinctorius L.) with weedy relatives in the New World. Can J Plant Sci 84:923–934

    Article  Google Scholar 

  • Miklas PN, Hu J, Grünwald NJ, Larsen KM (2006) Potential application of TRAP (targeted region amplified polymorphism) markers for map** and tagging disease resistance traits in common bean. Crop Sci 46:910–916

    Article  CAS  Google Scholar 

  • Mortensen K, Bergman JW, Burns EE (1983) Importance of Alternaria carthami and A. alternaria in causing leaf spot diseases of safflower. Plant Dis 67(11):1187–1190

    Article  Google Scholar 

  • Mozaffarian DM, Katan B, Ascherio A, Stampfer MJ, Willet WC (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354:1601–1613

    Article  PubMed  CAS  Google Scholar 

  • Mündel H, Bergman JW (2009) Safflower. In: Vollmann J, Rajcan I (eds) Handbook of plant breeding: oil crops. Springer, New York, pp 423–447; 548pp

    Google Scholar 

  • Pascual-Villalobos MJ, Alburquerque N (1996) Genetic variation of a safflower germplasm collection grown as a winter crop in southern Spain. Euphytica 92:327–332

    Article  Google Scholar 

  • Patil MB, Shinde YM, Attarde KA (1993) Evaluation of safflower cultures for resistance to Alternaria leaf spot (Alternaria carthami) and management strategies. In: Li D, Yuanzhou H (eds) Proceedings of the third international safflower conference, Bei**g, 14–18 June 1993, pp 269–278

    Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J (1996) The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rubis DD (1981) Development of root rot resistance in safflower by introgressive hybridization and thin-hull facilitated recurrent selection. In: Proceedings of the first international safflower conference, Davis, CA, 12–16 July 1981

    Google Scholar 

  • Rubis DD, Levin MD, McGregor SE (1966) Effects of honey bee activity and cages on attributes of thin-hull and normal safflower lines. Crop Sci 6:11–14

    Article  Google Scholar 

  • Rudolphi S, Becker HC, von Witzke-Ehbrecht S (2008) Outcrossing rate of safflower (Carthamus tinctorius L.) genotypes under agro climatic conditions of Northern Germany. In: Proceedings of the seventh international safflower conference, Wagga Wagga, NSW

    Google Scholar 

  • Sasanuma T, Sehgal D, Sasakuma T, Raina SN (2008) Phylogenetic analysis of Carthamus species based on the nucleotide sequence of the nuclear SACPD gene and chloroplast trnL-trnF IGS region. Genome 51(9):721–727

    Article  PubMed  CAS  Google Scholar 

  • Scweinfurth G (1887) Uber pflanzenreste aus altagyptschen Grabern. Berichte Deutschen Botanischen Gesellschaft 2:351–371. Cited in: Weiss EA (ed) (2000) Safflower. In: Oilseed crops. Blackwell Science, Oxford, pp 93–130; 364pp

    Google Scholar 

  • Sehgal D, Raina SN (2005) Genoty** safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146:67–76

    Article  CAS  Google Scholar 

  • Sehgal D, Raina SN, Devarumath RM, Sasanuma T (2009) Nuclear DNA assay in solving issues related to the ancestry of the domesticated safflower (Carthamus tinctorius L.) and the polyploidy (Carthamus) taxa, and phylogenetic and genomic relationships in the genus Carthamus L. (Astreaceae). Mol. Phylogenet Evol 53:631–644

    Article  CAS  Google Scholar 

  • Singh V, Nimbkar N (2006) Safflower (Carthamus tinctorius L.), Chap. 6. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, vol 4. CRC, New York, pp 167–194

    Google Scholar 

  • Singh V, Galande MK, Deshpande MB, Nimbkar N (2001) Inheritance of wilt (Fusarium oxysporam f sp. Carthani) resistance in safflower. In: Proceedings of the fifth international safflower conference, Williston, ND, 23–27 July 201

    Google Scholar 

  • Thomas CA, Zimmer DE (1971) Registration of USB safflower germplasm (Reg. No. GP 10). Crop Sci 11:606

    Google Scholar 

  • Urie AL, Knowles PF (1972) Safflower introductions resistant to verticillium wilt. Crop Sci 12:5450546

    Article  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity, and breeding of cultivated plants. Ronald, New York, NY, 366pp

    Google Scholar 

  • Velasco L, Fernández-Maryinez JM (2004) Registration of CR-34 and CR-81 safflower germplasms with increased tocopherol. Crop Sci 44:2278

    Article  Google Scholar 

  • Weiss EA (ed) (2000) Safflower. In: Oilseed crops. Blackwell Science, Oxford, pp 93–129

    Google Scholar 

  • Woodhead M, Rusell J, Squirell J, Hollingsworth PM, Mackenzie K, Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Wu W, Zheng Y, Chen L, Liu R, Huang C (2007) Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol 54:1043–1051

    Article  CAS  Google Scholar 

  • Zhang Z (2001) Genetic diversity and classification of safflower (Carthamus tinctorius L.) germplasm by isozyme techniques. In: Bergman J, Mundel H-H (eds) Proceedings of the fifth international safflower conference, Williston, ND, 23–27 July 2001, pp 157–162

    Google Scholar 

  • Zhang Z, Johnson RC, Compilers (1999) Safflower germplasm collection directory. IPGRI Office for East Asia, Bei**g

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore J. Kisha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kisha, T.J., Johnson, R.C. (2012). Safflower. In: Gupta, S. (eds) Technological Innovations in Major World Oil Crops, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0356-2_6

Download citation

Publish with us

Policies and ethics

Navigation