Concentrating Solar Collectors

  • Chapter
Advances in Solar Energy

Abstract

This chapter provides an introduction to concentrating solar collectors. The optical and thermal characteristics are described in relatively simple terms, and copious references to the more technical literature are given. A unified framework is used for analyzing the performance of all solar collector types; it involves optical efficiency, U-value, and heat transfer factor. Two measures of performance are of particular interest: the instantaneous efficiency under peak insolation (which is easy to measure), and the annual energy delivered by the collector (which is difficult to measure but is crucial for the economic evaluation). A simple but accurate graphical procedure is presented for obtaining the annual energy from the instantaneous efficiency curve. The chapter includes a discussion of practical aspects, covering choice of materials as well as problems of cleaning and tracking. Data for cost and performance of current collectors are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 103.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Winston. “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245 (1970).

    Article  Google Scholar 

  2. A. Rabl, “Comparison of solar concentrators.” Solar Energy 18, 93 (1976).

    Article  Google Scholar 

  3. W. T. Welford and R Winston, The Optics of Nonimaging Concentrators (Academic Press, New York, 1978).

    Google Scholar 

  4. H. Hinterberger and R Winston, Rev. Sei Instr. 37, 1094 (1966).

    Article  CAS  Google Scholar 

  5. M. Ploke, “Lichtführungseinrichtungen mit starker Konzentrationswirkung,” Optik 25, 31 (1967).

    Google Scholar 

  6. V. K. Baranov and G. K. Melnikov, Soviet Journal of Optical Technology 33, 408 (1966).

    Google Scholar 

  7. R. Winston and H Hinterberger, “Principles of cylindrical concentrators for solar energy,” Solar Energy 17, 255 (1975).

    Article  Google Scholar 

  8. A. Rabl and R Winston, “Ideal concentrators for finite sources and restricted exit angles,” Applied Optics 15, 2880 (1976).

    Article  CAS  Google Scholar 

  9. R. Winston, “Dielectric compound parabolic concentrators,” Applied Optics 15, 291 (1976).

    Article  CAS  Google Scholar 

  10. W. R. Mclntire, “New reflector design which avoids losses through gaps between tubular absorbers and reflectors,” Solar Energy 25, 215 (1981).

    Article  Google Scholar 

  11. A. Rabl, J. O’Gallagher, and R Winston, “Design and test of non-evacuated solar collectors with compound parabolic concentrators,” Solar Energy 25, 335 (1980).

    Article  Google Scholar 

  12. A. Rabl, “Radiation transfer through specular passages,” Int. J. Heat Mass Transfer 20, 323 (1977).

    Article  Google Scholar 

  13. A. R, abl, “Optical and thermal properties of compound parabolic concentrators,” Solar Energy 18, 497 (1976).

    Article  Google Scholar 

  14. W. R. Mclntire, “Truncation of nonimaging cusp concentrators,” Solar Energy 23, 35 (1979).

    Google Scholar 

  15. A. Rabl, Active Solar Collectors and Their Applications (Oxford University Press, New York, 1985).

    Google Scholar 

  16. R. Winston and W. T. Welford, “Geometrical vector flux and some new non-imaging concentrators,” J. Optical Soc. America 69, 532 (1979).

    Article  Google Scholar 

  17. D. R. Mills and J. E. Giutronich, “Ideal prism solar concentrators,” Solar Energy 21, 423 (1978).

    Article  Google Scholar 

  18. D. R. Mills, “The place of extreme asymmetrical non-focusing concentrators in solar energy utilization,” Solar Energy 21, 431 (1978).

    Article  Google Scholar 

  19. J. J. O’Gallagher et al., “Absorption enhancement in solar collectors by multiple reflections,” Solar Energy 24, 323 (1980).

    Article  Google Scholar 

  20. A. Rabl, N. B. Goodman, and R Winston, “Practical design considerations for CPC solar collectors,” Solar Energy 22, 373 (1979).

    Article  Google Scholar 

  21. W. R. Mclntire, “Elimination of the optical losses due to gaps between absorbers and their reflectors,” Proc. of the 1980 Annual Meeting of the American Section of the International Solar Energy Society. 2–6 June 1980, Phoenix, Ariz., p. 600.

    Google Scholar 

  22. R. Winston, “Cavity enhancement by controlled directional scattering,” Applied Optics 19, 195 (1980).

    Article  CAS  Google Scholar 

  23. W. R. Mclntire, “Stationary concentrators for tubular evacuated receivers: Optimization and comparison of reflector designs,” Proc. of the 1980 Annual Meeting of AS of IS ES, 2–6 June 1980, Phoenix, Ariz., p. 505.

    Google Scholar 

  24. B. Window and I. M. Bassett, “Optical collection efficiencies of tubular solar collectors with specular reflectors.” Solar Energy 26, 341 (1981).

    Article  Google Scholar 

  25. H. Tabor. “Stationary mirror systems for solar collectors,” Solar Energy 2, 17 (1958).

    Article  Google Scholar 

  26. K. G. T. Hollands, “A concentrator for thin-film solar cells,” Solar Energy 13, 149 (1971).

    Article  Google Scholar 

  27. M. K. Selcuk, “Analysis, development and testing of a fixed tilt solar collector employing reversible vee-trough reflectors and vacuum tube receivers,” Solar Energy 22, 413 (1979).

    Article  Google Scholar 

  28. S. L. Grassie and N. R. Sheridan, “The use of planar reflectors for increasing the energy yield of flat plate collectors,” Solar Energy 19, 663 (1977).

    Article  Google Scholar 

  29. D. K. McDaniels et al., “Enhanced solar energy collection using reflector solar-thermal collector combinations,” Solar Energy 17, 277 (1975).

    Article  Google Scholar 

  30. S. C. Seitel, “Collector performance enhancement with flat reflectors,” Solar Energy 17, 291 (1975).

    Article  Google Scholar 

  31. D. C. Larson, “Optimization of flat plate collector-flat mirror system,” Solar Energy 24, 203 (1980).

    Article  Google Scholar 

  32. H. F. Chiam, “Planar concentrators for flat plate solar collectors,” Solar Energy 26, 503 (1981).

    Article  Google Scholar 

  33. A. Rabl and P Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” ASME Journal of Solar Energy Engineering 104, 237 (1982).

    Article  Google Scholar 

  34. Grether and Hunt, “Description of the LBL reduced data base,” informal report, LawTence Berkeley Laboratory, Berkeley, CA 94720.

    Google Scholar 

  35. F. Biggs and C. N. Vittitoe, The Helios Model for the Optical Behavior of Reflecting Solar Concentrators, Albuquerque, N.M.: Sandia Laboratories, report SAND 76-0347, 1979.

    Google Scholar 

  36. R. B. Pettit and B. L. Butler, “Semiannual review ERDA thermal power systems, dispersed power systems, distributed collectors, and research and development: Mirror materials and selective coatings,” Albuquerque, N.M.: Sandia Laboratories, report SAND 77-0111.

    Google Scholar 

  37. H. Cramer, Mathematical Methods of Statistics (Princeton University Press, Princeton, N.J., 1947).

    Google Scholar 

  38. W. J. Adams, The Life and Times of the Central Limit Theorum (Kaedman, New York, 1947).

    Google Scholar 

  39. C. N. Vittitoe and F Biggs, “Six-Guassian representation of the angular brightness distribution for solar radiation,” Solar Energy 27, 469 (1981).

    Article  Google Scholar 

  40. R. B. Pettit, “Characterization of the reflected beam profile of solar mirror materials,” Solar Energy 19, (1977).

    Google Scholar 

  41. P. Bendt et al., “Optical analysis and optimization of line focus solar collectors,” Golden, Colo.,: Solar Energy Research Institute, SERI/TR-36-092, 1979.

    Google Scholar 

  42. M. Riaz. “A theory of concentrators of solar energy on a central receiver for electric power generation,’* J. Engineering for Power 98, 375) 1976). This reference derives closed analytical formulas for shading and blocking effects.

    Google Scholar 

  43. L. L. Vant-Hull, “An educated ray trace approach to solar tower optics,” Proc. of the Society of Photo-Optical Instrumentation Engineers 85, 111 (1976).

    Google Scholar 

  44. P. Leary and J. Hankins, “A user’s guide for MIRVAL computer code for comparing designs of heliostat receiver optics for central receiver solar power plants,” Livermore, Calif.: Sandia Laboratories, report SAND 77-8280, 1977.

    Google Scholar 

  45. T. A. Dellin and M. J. Fish, “A user’s manual for DELSOL—A computer code fo calculating the optical performance, field layout, and optimal system design for solar central receiver plants,” Albuquerque, N.M.: Sandia Laboratories, report SAND 79-8215, 1979.

    Google Scholar 

  46. K. D. Bergeron and C. J. Chiang, “SCRAM: A fast computational model for the optical performance of point focus solar central receiver systems,” Albuquerque, N.M.: Sandia Laboratories, report SAND 80-0433, 1980.

    Google Scholar 

  47. M. D. Walzel, F. W. Lipps, and L. L. Vant-Hull, “A solar flux density calculation for a solar tower concentrator using a two-dimensional hermite function expansion,” Solar Energy 19, 239 (1977).

    Article  Google Scholar 

  48. F. W. Lipps and L. L. Vant-Hull, “A cell-wise method for the optimization of large central receiver systems,” Solar Energy 20, 505 (1978).

    Article  Google Scholar 

  49. P. J. Eicker, Sandia Livermore Laboratories, letter of 18 April 1979 to J. Thornton, Solar Energy Research Institute.

    Google Scholar 

  50. C. L. Pitman and L. L. Vant-Hull, “Atmospheric transmission model for a solar beam propagating between a heliostat and a receiver,” Progress in Solar Energy, (American Solar Energy Society, Boulder, Colo., 1982), p. 1267.

    Google Scholar 

  51. E. M. Kritchman, A. A. Friesem, and G Yekutieli, “Highly concentrating fresnel lenses,” Applied Optics 18, 2688 (1979).

    Article  CAS  Google Scholar 

  52. M. Collares-Pereira, “High temperature solar collector with optimal concentration non-focussing Fresnel lens with secondary concentrator,” Solar Energy 23, 409 (1979).

    Article  Google Scholar 

  53. M. J. O’Neill, “A unique new Fresnel lens solar concentrator,” International Solar Energy Congress, May 1979, Atlanta, Ga. Also U. S. patent No. 4,069,812, “Solar Concentrator and Energy Collection System” (1978).

    Google Scholar 

  54. E. M. Kritchman, A. A. Friesem, and G Yekutieli, “Efficient lens for solar concentration,” Solar Energy 22, 119 (1979).

    Article  Google Scholar 

  55. A. M. Clausing. “The performance of a stationary’ reflector/tracking absorber solar concentrator,” ISES Solar Energy Conference, Vol. 2, pp. 304, Winnipeg, Canada, August 1976.

    Google Scholar 

  56. J. F. Kreider, “Thermal performance analysis of the stationary reflector/tracking absorber (SRTA) solar concentrator,” J. Heat Transfer 97, 451 (1975).

    Article  Google Scholar 

  57. H. Tabor and H Zeimer, “Low cost focusing collector for solar power units,” Solar Energy 6, 55 (1962).

    Article  Google Scholar 

  58. J. W. Gerich, “A nontracking inflated cylindrical solar concentrator,” ISES Congress, Atlanta, Ga., May 28–June 1, 1979.

    Google Scholar 

  59. I. R. Edmonds et al. “The design and performance of ideal solar concentrators based on the prism-assisted cylindrical reflector,” Solar Energy 30, 537 (1983).

    Article  Google Scholar 

  60. J. L. Russell, “Central station solar power,” J. of Power Engng. (Nov. 1974).

    Google Scholar 

  61. P. J. Eggers et al., General Atomic report GA-A14209 (Rev.) UC-62.

    Google Scholar 

  62. L. W. Brantley, Jr., “A pressure stabilized solar collector,” Proceedings of the 1977 Annual Meeting of the American Section of ISES, June 1977.

    Google Scholar 

  63. J. W. Gerich, “An inflated cylindrical solar concentrator,” Proceedings of the 1978 Annual Meeting of the American Section of ISES, Denver, Colo., Aug. 28–31, 1978, p. 889.

    Google Scholar 

  64. P. G. McCormick, “Optical evaluation of cylindrical elastic concentrators,” Solar Energy 26, 519 (1981).

    Article  Google Scholar 

  65. J. D. Walton, “Development of the spiral Fresnel concentrator,” presented at the International Symposium on Solar Thermal Power and Energy Systems, 15–20 June 1980, Marseille, France.

    Google Scholar 

  66. U. H. Kurzweg, “Maximized solar flux concentration achievable with Axicon collectors,” Sclar Energy 25, 221 (1980).

    Article  Google Scholar 

  67. E. Kritchman, “Optimized second stage concentrator,” Applied Optics 21, 751 (1982).

    Article  CAS  Google Scholar 

  68. E. Kritchman, “A brief comparison of second stage elements,” Applied Optics 20, 3824 (1982).

    Article  Google Scholar 

  69. E. Kritchman, “CEC second stage concentrator,” Applied Optics21, 751 (1982).

    Article  Google Scholar 

  70. P. I. Cooper and R. V. Dunkle, “A nonlinear flat-plate collector model,” Solar Energy 26, 133 (1981).

    Article  Google Scholar 

  71. F. Kreith and J. F. Kreider, Principles of Solar Engineering, 1st ed. (McGraw-Hill, New York, 1978).

    Google Scholar 

  72. J. J. O’Gallagher et al., “A new evacuated CPC collector tube,” Solar Energy 29, 575 (1982).

    Article  Google Scholar 

  73. SANDIA 1980. “Line focus solar thermal energy technology development. FY 1979 annual report.” Albuquerque, N. M.: Sandia National Laboratories, report SAND 80-0865. NM 87185.

    Google Scholar 

  74. UA pipeline to the sun from Owens-Illinois.* SUNPAK No. 13.11 OW, 1979. Owens-Illinois, Inc. Development Center, 1020 North Westwood, Toledo, Ohio 43607.

    Google Scholar 

  75. H. W. Gaul and A Rabl, “Incidence angle modifier and average optical efficiency of parabolic trough collectors,” Transactions of the ASME J. of Solar Energy Engineering 102, 16 (1980).

    Article  Google Scholar 

  76. ASHRAE Standard 93-77* “Collector test procedure of the American Society of Heating, Refrigeration and Air Conditioning Engineers,” 343 W. 43rd St., New York. N\Y.

    Google Scholar 

  77. W. A. Beckman, “Duct and pipe losses in solar energy systems,” Solar Energy 21, 53 (1978).

    Google Scholar 

  78. F. de Winter, “Heat exchanger penalties in double loop solar water heating systems,” Solar Energy 17, 335 (1975).

    Article  Google Scholar 

  79. A. Rabl, “Yearly average performance of the principal solar collector types,” Solar Energy 27, 215 (1981).

    Article  Google Scholar 

  80. V. E. Dudley and R. M. Workhoven, Summary Report: Concentrating Solar Collector Test Results Collector Module Test Facility. Albuquerque, N. M.: Sandia Laboratories, report SAND 78-0977, 1979.

    Google Scholar 

  81. T. Sullivan, “Solar heat transfer fluids,” Solar Age, Dec. 1980, p. 33.

    Google Scholar 

  82. J. Vresk et al., “Final reliability and materials design guidelines for solar domestic hot water systems,” Argonne National Laboratory, Sept. 1981, report ANL/SDP-11.

    Google Scholar 

  83. B. O. Séraphin and G. E. Carver, Annual Report, May 1, 1978 to April 30, 1979. “Chemical vapor deposition of refractory metal reflectors for spectrally selective solar absorbers,” Optical Sciences Center, University of Arizona, Tucson, Ariz. (1979).

    Google Scholar 

  84. B. L. Butler and R. S. Claassen, “Survey of solar materials,” Transactions of the ASME J. of Solar Energy Engineering 102, 175 (1980).

    Article  CAS  Google Scholar 

  85. G. Jorgensen, “Long-term glazing performance”, SERI report SERI/TP-31-193.

    Google Scholar 

  86. J. Vitko, Jr., “Optical studies of second surface mirrors proposed for use in solar heliostats,” Sandia Laboratories, Livermore, Calif., report SAND 78-8228.

    Google Scholar 

  87. B. Atkinson and R Caesar, “The Volkspanel Model T,” Solar Age April 1983, 33.

    Google Scholar 

  88. R. E. Peterson and J. W. Ramsey, “Thin film coatings in solar-thermal power systems,” J. Vacuum Sci. Technol 12, 174 (1975)

    Article  CAS  Google Scholar 

  89. E. K. Beauchamp, “Low reflectance films for solar collector cover plates,” Albuquerque, N. M.: Sandia Laboratories, report SAND 75-0035, 1975.

    Google Scholar 

  90. A. Rabl, “Prisms with total internal reflection as solar reflectors,” Solar Energy 19, 555 (1977).

    Article  Google Scholar 

  91. G. Smestad and P Hamill, “Concentration of solar radiation by white painted transparent plates,” Applied Optics 21, 1298 (1982).

    Article  CAS  Google Scholar 

  92. P. Call, “National program plan for absorber surfaces R.:D,” Golden, Colo.: Solar Energy Research Institute, report SERI/TR-31-103, 1979.

    Google Scholar 

  93. R. S. Berg, “Heliostat dust buildup and cleaning studies,” Albuquerque, N. M.: Sandia Laboratories, report SAND 78-0510, 1978.

    Google Scholar 

  94. J. M. Freese, “Effects of outdoor exposure on the solar reflectance properties of silvered glass mirrors,” Albuquerque, N. M.: Sandia Laboratories, report SAND 78-1649, 1978.

    Google Scholar 

  95. R. L. Champion, “Cleaning and maintenance,” Proceedings of the Solar Thermal Concentrating Collector Technology Symposium, June 14–15, 1978, edited by B. F. Gupta and F Kreith, SERI report SERI/TP-34-048.

    Google Scholar 

  96. R. C. Gee, “An experimental performance evaluation of line-focus sun trackers,” Golden, Colo.: Solar Energy Research Institute, report SERI/TR-632-646, 1982.

    Google Scholar 

  97. J. T. Holmes, “Heliostat operation at the central receiver test facility,” Proc. STTF Testing for Long-Term Systems Performance Workshop, Albuquerque, N. M.: Jan. 7-9, 1981, p. 179.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Rabl, A. (1985). Concentrating Solar Collectors. In: Böer, K.W., Duffie, J.A. (eds) Advances in Solar Energy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9951-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9951-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9953-7

  • Online ISBN: 978-1-4613-9951-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation