Dispersion Inequalities and Their Application to the Pion’s Electromagnetic Radius and the Kℓ3 Parameters

  • Chapter
Fundamental Interactions in Physics and Astrophysics

Part of the book series: Studies in the Natural Sciences ((SNS,volume 3))

  • 101 Accesses

Abstract

The dispersion relation is an indispensable tool for analyzing various problems in high energy physics. In this paper, we shall consider applications of a new type of dispersion relation to various problems.

Work supported in part by the U.S. Atomic Energy Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. e.g. M. L. Goldberger and K. M. Watson, “Collision Theory” John-Wiley and Sons, N. Y. (1964).

    MATH  Google Scholar 

  2. e.g. G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963); M. Sugawara and A. Tubis, ibid 130, 2127 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  3. B. V. Geshkenbein, Yad. Fiz. 9, 1232 (1969) [English Translation, Soviet Journ. of Nucl. Phys. 9, 720 (1969)].

    Google Scholar 

  4. I. Raszillier, Lett. Nuovo Cimento 2, 349 (1971) and preprint, Institute of Physics, Bucharest (1971).

    Article  Google Scholar 

  5. D. N. Levin, V. S. Mathur and S. Okubo, Phys. Rev. to be published. In this paper, we rediscovered the same results of reference (3) without being aware of its prior existence.

    Google Scholar 

  6. T. N. Truong and R. Vinh-Mau; Phys. Rev. 117, 2494 1969).

    Article  ADS  Google Scholar 

  7. D. R. Palmer, Nuovo Cimento, to be published.

    Google Scholar 

  8. N. N. Meiman, Zh. Eksperim. i. Theor. Fiz. 44, 1228 (1963) [English Translation: Soviet Phys. J.E.T.P. 17, 830 (1963)].

    MathSciNet  Google Scholar 

  9. S. Okubo, Phys. Rev. D4, 725 (1971) and D3, 2807 (1971).

    ADS  Google Scholar 

  10. L. F. Li and H. Pagels, Phys. Rev. D3, 2191 (1971) and D4, 255 (1971).

    ADS  Google Scholar 

  11. M. Gell-Mann, R. J. Oakes and B. Renner, P ys. Rev. 175, 2195 (1968); S. L. Glashow and S. Weinberg, Phys. Rev. Lett. 20, 224 (1968).

    Article  ADS  Google Scholar 

  12. See reference (9). Actually, another possible solution \(\left ( \textup{A}_{44} \right) \frac{1}{2}+\left ( \textup{A}_{33} \right) \frac{1}{2}\leqslant \left ( \textup{V}_{44} \right) \frac{1}{2}\) has been rejected in view of the fact that it contradicts the exact SU (3) limit.

    ADS  Google Scholar 

  13. S. Okubo and I. F. Shih, Phys. Rev. D4, 2020 (1971); I. F. Shih and S. Okubo, Phys. Rev. D4, to appear in Dec. 1 (1971) issue.

    ADS  Google Scholar 

  14. C. Callan and S. B. Treiman, Phys. Rev. Lett. 16, 153 (1966); M. Suzuki, ibid 16, 212 (1966); V. S. Mathur, S. Okubo and L. K. Pandit, ibid, 16, 311 (1961). In view of a SU (3) consideration, we choose the the soft pion point at \(\textup{t}=\textup{m}_{\textup{K}} {2}-\textup{m}_{\textup{K}} {\pi}\). See R. Dashen and M. Weinstein, Phys. Rev. Lett. 22, 1337 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264 (1965); H. R. Quinn and J. D. Bjorken, Phys. Rev. 171, 1660 (1968).

    Article  ADS  Google Scholar 

  16. L. M. Chounet, J. M. Gaillard and M. K. Gaillard, CERN preprint (1971).

    Google Scholar 

  17. S. D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev. 136, 1439 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  18. D. R. Palmer, Phys. Rev. D4, 1558 (1971).

    ADS  Google Scholar 

  19. Here, we use a version of the Phragmén and Lindelöf theorm due to Nevalinna, Eindeutige Analytische Funktionen, (Anfl. Springer Verlag. Berlin 1953, p. 44); E. Hille, Analytic Function Theory, Vol. II, (Ginn and Co. Boston, p. 412, 1962).

    Google Scholar 

  20. S. Ciulli, quoted in reference (4). Unfortunately, the present author did not have an opportunity to see this paper.

    Article  Google Scholar 

  21. K. Hoffmann, Banach Spaces of Analytic Functions, (Prentice Hall, Englewood Cliffs, N. J. 1962); H. Helson, Lectures on Invariant Sub-spaces, (Academic Press, New York 1964).

    Google Scholar 

  22. H. Harari, Phys. Rev. Lett. 17, 1303 (1966). However, the normalization of t2 (υ,q2) is different by a factor π from the one used in this paper.

    Article  MathSciNet  ADS  Google Scholar 

  23. S. D. Drell and T. M. Yan, Phys. Rev. Lett. 24, 181 (1970).

    Article  ADS  Google Scholar 

  24. M. Damashek and F. J. Gilman, Phys. Rev. D1, 1319 (1970).

    ADS  Google Scholar 

  25. Y. S. ** and A. Martin, Phys. Rev. 135, B1395 (1964).

    Google Scholar 

  26. A. Martin, “High-Energy Physics and Elementary Particles,” International Atomic Energy Agency, Vienna, 1965, p. 155; L. Lukaszuk and A. Martin, Nuovo Cimento, 52A, 122 (1967).

    Google Scholar 

  27. A. K. Common and R. Wit, Nuovo Cimento 3A, 179 (1971).

    MathSciNet  ADS  Google Scholar 

  28. A. Martin, Nuovo Cimento 47, 265 (1969); A. K. Common, ibid 63, 863 (1969); F. J. Yndurain, ibid 64, 225 (1969).

    ADS  Google Scholar 

  29. B. Bonnier and R. Vinh Mau, Phys. Rev. 165, 1923 (1967).

    Article  ADS  Google Scholar 

  30. D. N. Levin, S. Okubo and D. R. Palmer, Phys. Rev. D4, 1847 (1971); D. N. Levin and D. R. Palmer, Phys. Rev. D, to appear in the Dec. 15, 1971 issue.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Okubo, S. (1973). Dispersion Inequalities and Their Application to the Pion’s Electromagnetic Radius and the Kℓ3 Parameters. In: Iverson, G., Perlmutter, A., Mintz, S. (eds) Fundamental Interactions in Physics and Astrophysics. Studies in the Natural Sciences, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4586-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4586-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4588-6

  • Online ISBN: 978-1-4613-4586-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation