Abstract

The advent of relatively inexpensive and convenient techniques for identifying genetic variants of proteins on the basis of differences in molecular charge, thermostability, or, for enzymes, activity has opened a new chapter in the study of mutation. In this presentation, we shall speak to the progress being made in our understanding of human mutation rates and in monitoring programs because of the ability to readily detect charge and size variations in proteins; in a companion presentation, Dr. Mohrenweiser will address the progress being made with reference to the search for mutations affecting thermo stability or activity levels.

These studies have been supported in part by Department of Energy Contract E(11–1)(2828), National Cancer Institute Program-Project 5-P01-CA-26803, and the Radiation Effects Research Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. H. O’Farrell, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 250:4007–4021 (1975).

    Google Scholar 

  2. J. Klöse, Protein map** by combined isoelectric focusing and electrophoresis of mouse tissue. A novel approach to testing for induced point mutations in mammals, Humangenetik, 26:231–243 (1975).

    Google Scholar 

  3. C. R. Merril, D. Goldman, S. A. Sedman, and M. H. Ebort, Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins, Science, 211: 1437–1438 (1981).

    Article  ADS  Google Scholar 

  4. D. W. Sammons, L. D. Adams, and E. E. Nishizawa, A silver-based color development system for staining of polypeptides in polyacrylamide gels, Electrophoresis, 2:135–141 (1981).

    Article  Google Scholar 

  5. W. Wray, T. Boulikas, V. P. Wray, and R. Hancock, Silver staining of proteins in polyacrylamide gels, Anal. Biochem., 118: 197–203 (1981).

    Article  Google Scholar 

  6. H. Harris, D. A. Hopkinson, and E. B. Robson, The incidence of rare alleles determining electrophoretic variants: Data on 43 enzyme loci in man, Ann. Hum. Genet., Lond., 37:237–253 (1974).

    Article  Google Scholar 

  7. J. V. Neel, H. W. Mohrenweiser, C. Satoh, and H. B. Hamilton, in: “Genetic Damage in Man Caused by Environmental Agents,” K. Berg, ed., pp. 29–47, Academic Press, New York (1979).

    Google Scholar 

  8. J. V. Neel, H. W. Mohrenweiser, and M. H. Meisler, Rate of spontaneous mutation at human loci encoding for protein structure, Proc. Nat. Acad. Sci. USA, 77:6037–6041 (1980).

    Article  ADS  Google Scholar 

  9. J. V. Neel, The wonder of our presence here: A commentary on the evolution and maintenance of human diversity, Persp. Biol. Med., 25, 518–558 (1982).

    Google Scholar 

  10. K. Altland, M. Kacmpter, M. Forssbohm, and W. Werner, Monitoring for changing mutation rates using blood samples submitted to PKU screening. Proc., VI Int. Cong. Hum. Genet., Alan Liss, New York, pp. 277–287 (1982).

    Google Scholar 

  11. J. V. Neel, C. Satoh, H. B. Hamilton, M. Otake, K. Goriki, T. Kageoka, M. Fujita, S. Neriishi, and J. Asakawa, Search for mutation affecting protein structure in children of atomic bomb survivors: Preliminary report. Proc. Nat. Acad. Sci. USA, 77:4221–4225 (1980).

    Article  ADS  Google Scholar 

  12. W. J. Schull, M. Otake, and J. V. Neel, A reappraisal of the genetic effects of the atomic bombs: Summary of a thirty-four year study, Science, 213:1220–1227 (1981).

    Article  ADS  Google Scholar 

  13. C. Satoh, A. A. Awa, J. V. Neel, W. J. Schull, H. Kato, H. B. Hamilton, M. Otake, and K. Goriki, Genetic effects of atomic bombs, Proc., VI Int. Cong. Hum. Genet., Alan Liss, New York, pp. 267-276 (1982).

    Google Scholar 

  14. G. D. Kerr, Organ dose estimates for the Japanese atomic-bomb survivors, Health. Phys., 37:487–508 (1979).

    Article  Google Scholar 

  15. R. A. Conard, et al., A twenty-year review of medical findings in a Marshallese population accidentally exposed to radioactive fallout, Brookhaven Natonal Laboratory Publication 50424, pp. ix and 154, Upton, Brookhaven National Laboratory (1975).

    Book  Google Scholar 

  16. J. V. Neel, R. E. Ferrell, and R. A. Conard, The frequency of “rare” protein variants in Marshall Islanders and other Micronesians, Am. J. Hum. Genet., 28:262–269 (1976).

    Google Scholar 

  17. S. Wada, A. Yamada, Y. Nishimoto, S. Tokuoka, M. Miyanishi, S. Katsuta, and H. Umiza, Neoplasms of the respiratory tract among poison gas workers, Hiroshima Med. J., 16:728–745 (1963).

    Google Scholar 

  18. S. Wada, M. Miyanishi, Y. Nishimoto, S. Kambe, and R. W. Miller Mustard gas as a cause of respiratory neoplasia in man, Lancet, 1:1161–1163 (1968).

    Article  Google Scholar 

  19. Y. Nishimoto, Personal communication.

    Google Scholar 

  20. F. H. F. Li, J. V. Neel, and E. D. Rothman, A second study of the survival of a neutral mutant in a simulated Amerindian population, Am. Nat., 112:83–96 (1978).

    Article  Google Scholar 

  21. J. V. Neel and E. D. Rothman, Indirect estimates of mutation rates in tribal Amerindians, Proc. Nat. Acad. Sci. USA, 75: 5585–5588 (1978).

    Article  ADS  Google Scholar 

  22. M. Kimura and T. Ohta, The average number of generations until extinction of an individual mutant gene in a finite population, Genetics, 63:701–709 (1969).

    Google Scholar 

  23. M. Nei, Estimation of mutation rates from rare protein variants Am. J. Hum. Genet., 29:225–232 (1977).

    Google Scholar 

  24. E. D. Rothman and J. Adams, Estimation of expected number of rare alleles of a locus and calculation of mutation rate, Proc. Nat. Acad. Sci. USA, 75:5094–5098 (1978).

    Article  ADS  MATH  Google Scholar 

  25. K. K. Bhatia, M. M. Blake, and R. L. Kirk, The frequency of private electrophoretic variants in Australian aborigines and indirect estimates of mutation rate, Am. J. Hum. Genet., 31: 731–740 (1979).

    Google Scholar 

  26. K. K. Bhatia, N. M. Blake, S. W. Serjeantson, and R. L. Kirk, The frequency of private electrophoretic variants and indirect estimates of mutation rate in Papua New Guinea, Am. J. Hum. Genet., 33:1121122 (1981).

    Google Scholar 

  27. J. V. Neel and E. D. Rothman, Is there a difference between human populations in the rate with which mutation produces electrophoretic variants? Proc. Nat. Acad. Sci., USA, 78:3108–3112 (1981).

    Article  ADS  Google Scholar 

  28. J. J. Neel, in: “Population Structure and Genetic Disorders,” A. Eriksson, ed., pp. 173–193, Academic Press, London (1980).

    Google Scholar 

  29. W. M. Denevan, ed., The Native Population of the Americas in 1492, University of Wisconsin Press, Madison (1976).

    Google Scholar 

  30. J. V. Neel and E. A. Thompson, Founder effect and number of private polymorphisms observed in Amerindian tribes, Proc. Nat. Acad, Sci, USA, 75:1904–1908 (1978).

    Article  ADS  Google Scholar 

  31. F. Vogel and K. Altland, in: “Progress in Mutation Research,” K. C. Bora, G. R. Douglas, and E. R. Nestman, eds., Vol. 3, pp. 143–157, Elsevier Biomedical Press, Amsterdam (1982).

    Google Scholar 

  32. A. C. Stevenson and C. B. Kerr, On the distribution of frequencies of mutation to genes determining harmful traits in man, Mut. Res., 4:339–352 (1967).

    Article  Google Scholar 

  33. L. L. Cavalli-Sforza and W. Bodmer, The Genetics of Human Populations, Freeman and Co., San Francisco (1971).

    Google Scholar 

  34. N. Yasuda, An average mutation rate in man, Jap. J. Hum. Genet., 18:279–287 (1973).

    Google Scholar 

  35. H. W. Mohrenweiser and J. V. Neel, Frequency of thermo stability variants and estimation of the total “rare” variant frequency in human populations, Proc. Nat. Acad. Sci. USA, 78:5729–5733 (1981).

    Article  ADS  Google Scholar 

  36. T. Mukai and C. C. Cockerham, Spontaneous mutation rates at enzyme loci in Drosophila melanogaster, Proc. Nat. Acad. Sci. USA, 74:2514–2517 (1977).

    Article  ADS  Google Scholar 

  37. R. A. Voelker, H. E. Schaffer, and T. Mukai, Spontaneous allozyme mutations in Drosophila: Rate of occurrence and nature of the mutants, Genetics, 94:961–968 (1980).

    Google Scholar 

  38. S. J. O’Brien, On estimating functional gene number in eukaryotes, Nature (New Biol.), 242:52–54 (1973).

    ADS  Google Scholar 

  39. C. Stern, G. Carson, M. Kinst, E. Novitski, and D. Uphoff, The viability of heterozygotes for lethals, Genetics, 37:413–449 (1952).

    Google Scholar 

  40. Y. Hiraizumi and J. F. Crow, Heterozygous effects on viability, fertility, rate of development, and longevity of Drosophila chromosomes that are lethal when homozygous, Genetics, 45:1071–1083 (1960).

    Google Scholar 

  41. E. R. Soares, TEM-induced gene mutations at enzyme loci in the mouse, Env. Mut., 1:19–25 (1979).

    Article  MathSciNet  Google Scholar 

  42. F. M. Johnson, G. T. Roberts, R. K. Sharma, F. Chasalow, R. Zweidinger, A. Morgan, R. W. Hendren, and S. E. Lewis, The detection of mutants in mice by electrophoresis; Results of a model induction experiment with procarbazine, Genetics, 97: 113–124 (1981).

    Google Scholar 

  43. F. M. Johnson and S. E. Lewis, Electrophoretically detected germinal mutations induced in the mouse by ethylnitrosourea, Proc. Nat. Acad. Sci. USA, 78:3138–3141 (1981).

    Article  ADS  Google Scholar 

  44. Y. N. Tobari and K. Kojima, A study of spontaneous mutation rates at ten loci detectable by starch gel electrophoresis in Drosophila melanogaster, Genetics, 70:397–403 (1972).

    Google Scholar 

  45. W. Pretsch and K. R. Narayanan, Erfassung von Genmutationen bei Mänsen durch isoelectric Fokussierung, Hoppe-Seyler’s Z. Physiol. Chem., 360, 345 (1979).

    Google Scholar 

  46. F. M. Johnson and S. E. Lewis, Personal communication.

    Google Scholar 

  47. B. B. Rosenblum, S. M. Hanash, N. Yew, and J. V. Neel, Two-dimensional analysis of red cell membranes, Clin. Chem., 28: 925–931 (1982).

    Google Scholar 

  48. L. A. Wanner, J. V. Neel, and M. M. Meisler, Separation of alleleic variants by two-dimensional electrophoresis, Am. J. Hum. Genet., 34:209–215 (1982).

    Google Scholar 

  49. M. Skolnick, S. Sternberg, and J. V. Neel, Computer programs for adapting two dimensional gels to the study of mutation, Clin. Chem., 28:969–978 (1982).

    Google Scholar 

  50. M. Skolnick, An approach to completely automatic comparison of two-dimensional electrophoresis gels, Clin. Chem., 28:977–986 (1982).

    Google Scholar 

  51. E. H. McConkey, B. J. Taylor, and D. Phan, Human heterozygosity: A new estimate, Proc. Nat. Acad. Sci. USA, 76:6500–6504 (1979).

    Article  ADS  Google Scholar 

  52. K. E. Walton, D. Styer, and E. I. Gruenstein, Genetic polymorphism in normal human fibroblasts as analyzed by two-dimensional polyacrylamide gel electrophoresis, J. Biol. Chem., 254: 7951–7960 (1979).

    Google Scholar 

  53. A. J. L. Brown and C. H. Langley, Réévaluation of level of genie heterozygosity in natural populations of Drosophila melanogaster by two-dimensional electrophoresis, Proc. Nat. Acad. Sci. USA, 76:2381–2384 (1979).

    Article  ADS  Google Scholar 

  54. S. C. Smith, R. R. Racine, and C. H. Langley, Lack of genie variation in the abundant proteins of human kidney, Genetics, 96:967–974 (1980).

    Google Scholar 

  55. H. Hamaguchi, A. Ohta, R. Mukai, T. Yabe, and M. Yamada, Genetic analysis of human lymphocyte proteins by two-dimensional gel electrophoresis: 1. Detection of genetic variant polypeptides in PHA-stimulated peripheral blood lymphocytes, Hum. Genet., 59:215–220 (1981).

    Article  Google Scholar 

  56. H. Harris, The Principles of Human Biochemical Genetics, 3rd revised ed., Elsevier/North Holland Biomedical Press, Amsterdam (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Neel, J.V. et al. (1983). Biochemical Approaches to Monitoring Human Populations for Germinal Mutation rates: I. Electrophoresis. In: de Serres, F.J., Sheridan, W. (eds) Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk. Environmental Science Research, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3739-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3739-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3741-6

  • Online ISBN: 978-1-4613-3739-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation