Unstable and Stable Gene Amplification in Methotrexate-Resistant Leishmania Major and Natural Isolates of Leishmania Tarentolae

  • Chapter
Leishmaniasis

Part of the book series: NATO ASI Series ((NSSA,volume 171))

  • 38 Accesses

Abstract

One mechanism that cells and organisms can employ to increase the level of gene expression is that of specific gene amplification. This process has been most intensively studied in tumor cells exhibiting amplification of cellular oncogenes and cultured mammalian cells selected for resistance to drugs (1,2), though it also occurs in a developmentally-regulated manner in Xenopus (3) and Drosophila (4). In the laboratory gene amplification has been shown to occur in human parasites, including drug-resistant lines of three species of Leishmania (5–3) and in Plasmodium falciparum (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schimke, R.T., “Gene amplification in cultured animal cells”, Cell 37: 705–713 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. Stark, G.R. and G.M. Wahl, “Gene Amplification”, Ann. Rev. Bioch. 53: 447–91 (1984).

    Article  CAS  Google Scholar 

  3. Brown, D.D. and I.B. Dawid, “Specific gene amplification in oocytes”, Science 198: 739–742 (1968).

    Google Scholar 

  4. Spradling, A.C. and A.P. Mahowald, “Amplification of genes for chorion proteins during oogenesis in Drosophila melanogaster”, Proc. Natl. Acad. Sci. USA 77: 1096–2002 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. Peixoto, M. P. and S.M. Beverley, manuscript submitted.

    Google Scholar 

  6. Ellenberger, T.E. and S.M. Beverley, in preparation.

    Google Scholar 

  7. Coderre, J.A., S.M. Beverley, R.T. Schimke and D.V. Santi, “Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania”, Proc. Natl. Acad. Sci. USA 80: 2132–6 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. Kink, J.A. and K-P. Chang, “Tunicamycin-resistant Leishmania mexicana amazonensis: expression of virulence associated with an increased activity of N-acetylglucoasminyltransferase and amplification of its presumptive gene”, Proc. Natl. Acad. Sci. USA 84: 1253–1257 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. Inselburg, J., D.J. Bzik and T. Horii, “Pyrimethamine-resistant Plasmodium falciparum: overproduction of DHFR by a gene duplication”, Molec. Bioch. Parasit., in press.

    Google Scholar 

  10. Beverley, S.M., J.A. Coderre, D.V. Santi and R.T. Schimke, “Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extra-chromosomal circles which relocalize during stabilization”, Cell 38: 431–439 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. Beverley, S.M., T.E. Ellenberger, D.M. Iovannisci, G.M. Kapler, M.P. Peixoto, and B.J. Sina, “Gene amplification in Leishmania”, in Englund, P.T. and Sher, A. (eds.), Biology of Parasitism, MBL Lectures in Biology, in press (1988).

    Google Scholar 

  12. Beverley, S.M., T.E. Ellenberger, and J.S. Cordingley, “Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major”, Proc. Natl. Acad. Sci. USA 83: 2584–2588 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. Grumont, R. W.L. Washtien, D. Caput and D.V. Santi, “Bifunctional thymidylate synthase-dihydrofolate reductase from Leishmania: sequence homology with the corresponding monofunctional proteins”, Proc. Natl Acad. Sci. USA 83: 5387–5391 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. Garvey, E.P., J.A. Coderre and D.V. Santi, “Selection and properties of Leishmania resistant to 10-propargyl-5, 8-dideazaf olate, an inhibitor of thymidylate synthetase”, Molec. Bioch. Parasitology 17: 79–91 (1985).

    Article  CAS  Google Scholar 

  15. Beverley, S.M., in preparation.

    Google Scholar 

  16. Ellenberger, T.E. and S.M. Beverley, “Reductions in Methotrexate and folate influx in methotrexate-resistant lines of Leishmania major are independent of R or H region amplification”, J. Biol. Chem. 262: 13501–13506 (1987).

    PubMed  CAS  Google Scholar 

  17. Fojo, A., A. Shinichi, M.M. Gottesman and I. Pastan, “Reduced drug accumualtion in multiply drug-resistant human KB carcinoma cell lines”, Cancer Res. 45, 3002–3007 (1985).

    PubMed  CAS  Google Scholar 

  18. Riordan, J.R. and V. Ling, “Genetic and biochemical characterization of multidrug resistance”, Pharmac. Ther. 28, 51–75 (1985).

    Article  CAS  Google Scholar 

  19. Schwartz, D.C. and C.R. Cantor, “Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis”, Cell 37: 67–75 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. Carle, G.F. and M.V. Olson, “Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis”, Nucleic Acids Research 12: 5647–5664 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. Scholler, J.K., S.G. Reed and K. Stuart, “Molecular karyotype of species and subspecies of Leishmania”, Molec. Bioch. Parasitol. 20: 279–293 (1986).

    Article  CAS  Google Scholar 

  22. Comeau, A.M., S.I. Miller and D.F. Wirth, The chromosome location of four genes in Leishmania, Molec. Bioch. Parasitol. 21: 161–169 (1986).

    Article  CAS  Google Scholar 

  23. Beverley, S.M., manuscript submitted.

    Google Scholar 

  24. Spithill, T.W. and N. Samaras, “The molecular karyotype of Leishmania major and map** of alpha and beta-tubulin gene families to multiple unlinked chromosomal loci”, Nucleic Acids. Research 13: 4155–4169 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. Giannini, S.H., M. Schittini, J.S. Keithly, P.W. Warburton, C.R. Cantor and L.H.T. Van der Ploeg, “Karyotype analysis of Leishmania species and its use in classification and clinical diagnosis”, Science 232: 762–765 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. Garvey, E.P. and D.V. Santi, Stable amplified DNA in drug-resistant Leishmania exists as extra-chromosomal circles. Science 233: 535–540 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. Chu, G., Vollrath, D. and R.W. Davis, “Separation of large DNA molecules by contour-clamped homogeneous electric fields”, Science 234: 1582–1585 (1986).

    Article  PubMed  CAS  Google Scholar 

  28. Hieter, P., C. Mann, M. Snyder and R.W. Davis, “Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss”. Cell 40: 381–392 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. Murray A.W., N.P Schultes and J.W. Szostak, “Chromosome length controls mitotic chromosome segreation in yeast”, Cell 45: 529–536 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. Zakian, V.A., H.M. Blanton, L. Wetzel and G. Dani, “Size threshold for Saccharomyces cerevisiae chromosomes: generation of telocentric chromosomes from an unstable minichromosome”, Molec. Cell. Biol. 6: 925–932 (1986).

    PubMed  CAS  Google Scholar 

  31. White, M.J.D., Animal Cytology and Evolution, Cambridge University Press, London (1973).

    Google Scholar 

  32. Solari, A.J., The 3-dimensional fine structure of the mitotic spindle in Trypanosoma cruzi, Chromosoma 78: 239–255 (1980).

    Article  PubMed  CAS  Google Scholar 

  33. Gibson, W.C. and M.A. Miles, The karyotype and ploidy of Try panosoma cruzi, EMBO J. 5: 1299–1305 (1986).

    PubMed  CAS  Google Scholar 

  34. Stuart, K., S. Karp, R. Aline Jr., B. Smiley, J. Scholler and J. Keithly, Small nucleic acids in Leishmania, in Leishmaniasis: the first centenary 1885–1985, New Strategies for Control, D.T. Hart, ed., Plenum Press, N.Y., in press.

    Google Scholar 

  35. Hamers, R., N. Gajendran, J-C. Dujardin, K. Stuart, “Circular and linear forms of small nucleic acids in Leishmania”, in Leishmaniasis: the first centenary 1885–1985, New Strategies for Control, D.T. Hart, ed., Plenum Press, N.Y., in press.

    Google Scholar 

  36. Lopes, A., D.M. Iovannisci, D. McMahon-Pratt and S.M. Beverley, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beverley, S.M., Ellenberger, T.E., Petrillo-Peixoto, M. (1989). Unstable and Stable Gene Amplification in Methotrexate-Resistant Leishmania Major and Natural Isolates of Leishmania Tarentolae. In: Hart, D.T. (eds) Leishmaniasis. NATO ASI Series, vol 171. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1575-9_109

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1575-9_109

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8862-6

  • Online ISBN: 978-1-4613-1575-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation