Biomechanics and Morphology of the Medial Collateral and Anterior Cruciate Ligaments

  • Conference paper
Biomechanics of Diarthrodial Joints

Abstract

The ligaments of the knee serve to guide normal joint motion and provide stability. They are composed of densely packed collagen fibers, running parallel to the axis of loading. When unloaded, the tissue has a characteristic crimp pattern. As the ligament is stretched, more collagen fibers are recruited to bear load and the collagen crimp pattern disappears (Viidik and Lewin 1966). This gradual recruitment of ligament fibers results in a nonlinear constitutive relation for the ligament as a whole. During normal activity levels, the ligaments maintain normal knee joint kinematics with relatively small loads. When the knee is subjected to large externally applied forces such as those that occur in sporting activities, excessive joint motion is restricted by the increasing stiffness of the ligament.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abrahams M: Mechanical behavior of tendon in vitro. Med Biol Eng 1967;5:433–443.

    Article  Google Scholar 

  • Adams DJ, Shoemaker SC, Harris SL, Daniel D, Woo SL-Y: Trans of 36th annual OR S, 1990;15(2):508.

    Google Scholar 

  • Akeson WH, Amiel D, Woo SL-Y: Immobility effects on synovial joints. The pathomechanics of joint contracture. Biorheology 1980;17:95–110.

    Google Scholar 

  • Akeson WH, Woo SL-Y, Amiel D, Matthews JV: Biomechanical and biochemical changes in the periarticular connective tissue during contracture development in the immobilized rabbit knee. Connect Tissue Res. 1974;2:315–323.

    Article  Google Scholar 

  • Allard P, Thirty PS, Bourgault A, Drouin G: Pressure dependence of the “area micrometer” method in evaluation of cruciate ligament cross-section. J Biomed Eng 1979;1:265–267.

    Article  Google Scholar 

  • Arms SW, Pope ME, Boyle JB, Davignon PJ, Johnson RJ: Knee medial collateral ligament strain. Trans of 28th annual ORS 1982;7:47.

    Google Scholar 

  • Arnoczky SP, Rubin RM, Marshall JL: Microvasculature of the cruciate ligaments and its response to injury. An experimental study in the dog. J Bone Joint Surg [Am] 1979;61A:1221–1229.

    Google Scholar 

  • Arnold JA, Coker TP, Heaton LM, Park JM, Harris WD: Natural history of anteroir cruciate tears. Am J Sports Med 1979;7:305–313.

    Article  Google Scholar 

  • Ballock RT, Woo SL-Y, Lyon RM, Hollis JM, Akeson WH: Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit - A long-term histological and biomechanical study. J Orthop Res 1989;7(4):474–485.

    Article  Google Scholar 

  • Binkley JM, Peat M: The effects of immobilization on the ultrastructure and mechanical properties of the medial collateral ligament of rats. Clin Orthop 1986;203:301–308.

    Google Scholar 

  • Blanton PL and Biggs NL: Ultimate tensile strength of fetal and adult human tendons. J Biomech 1970;3:181–189.

    Article  Google Scholar 

  • Booth FW and Tipton CM: Ligamentous strength measurements in pre-pubescent and pubescent rats. Growth 1970;34:177–185.

    Google Scholar 

  • Brown PC and Consden R: Variation with age of shrinkage temperature of human collagen. Nature 1958;181:349–350.

    Article  Google Scholar 

  • Butler DL, Grood ES, Noyes FR, Zernicke RJ, Brackett K: Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 1984;17:579–596.

    Article  Google Scholar 

  • Butler DL, Hulse DA, Kay MD, Grood ES, Shires PK, D’Ambrosia R, Shoji H: Biomechanics of cranial cruciate ligament reconstruction in the dog. II. Mechanical properties. Vet Surg 1983;12:113–118.

    Google Scholar 

  • Butler DL, Kay MD, Stouffer DC: Comparison of material properties in fascicle- bone units from human patellar tendon and knee ligaments. J Biomech 1986;19:425–432.

    Article  Google Scholar 

  • Cabaud HE, Chatty A, Gildengorin V, Feltman RJ: Exercise effects on the strength of the rat anterior cruiciate ligament Am J Sports Med 1980;8(2):79–86.

    Google Scholar 

  • Cannon DJ and Davison PF: Cross-linking and aging in rat tendon collagen. Exp Geront 1973;8:51–62.

    Article  Google Scholar 

  • Clayton ML and Weir GJ: Experimental investigations of ligamentous healing. Am J Surg 1959;98:373–378.

    Article  Google Scholar 

  • Danto MI, Martin JP, Schultz EP, Ohland KJ, Newton PO, and Woo SL-Y: Comparison of three methods for measuring the cross-sectional area along the rabbit medial collateral ligament. ASME Biomech Symp AMD 1989;98:97–100.

    Google Scholar 

  • Dorlot JM, Ait ba Sidi M, Gremblay GM, Drouin G: Load-elongaton behavior of the canine anterior cruciate ligament. J Biomech Eng 1980;102:190–193.

    Article  Google Scholar 

  • Elden HR: Aging of rat tail tendon. J Gerontol 1964;19:173–178.

    Google Scholar 

  • Ellis DG: A shadow amplitude method for measuring cross-sectional areas ofbiological specimens. 21st Annu Conf Eng Med Biol 1968;51:6.

    Google Scholar 

  • Ellis DG: Cross-sectional area measurements for tención specimens: A comparison of several methods. I Biomech 1969;2:175–186.

    Article  Google Scholar 

  • Elsasser JC, Reynolds FC, Omohundro JR.: The non-operative treatment of collateral ligament injuries of the knee in professional football players: An analysis of seventy-four injuries treated non-operatively and twenty-four injuries treated surgically. J Bone Joint Surg 1974;56A(6):1185–1190.

    Google Scholar 

  • Enneking WF, Horowitz M: The intra-articular effects of immobilization on the human knee. J Bone Joint Surg [Am] 1972;54A:973–985.

    Google Scholar 

  • Evans EB, Eggers GWN, Butler JK, Blumel J: Experimental immobilization and remobilization of rat knee joints. J Bone Joint Surg [Am] 1960;42A:737–758.

    Google Scholar 

  • Feagin JA: The syndrome of the tomb anterior cruciate ligament Orthop Clin of N America 1979;10:81–90.

    Google Scholar 

  • Feagin JA, Cabaud HE, Curl WW: The anterior cruciate ligament: Radiographic and clinical signs of successful and unsuccessful repairs. Clin Orthop 1982;164:54–58.

    Google Scholar 

  • Fetto JF and Marshall JL: Medial collateral ligament injuries of the knee: A rationale for treatment Clin Orthop 1978;132:206.

    Google Scholar 

  • Forbes J, Frank C, Lam T, Shrive N: The biomechanical effects of combined ligament injuries on the medial collateral ligament. Trans Orthop Res Soc 1988;13:196.

    Google Scholar 

  • Frank C, McDonald D, Lieber R, Sabiston P: Biochemical heterogeneity within the maturing rabbit medial collateral ligament. Clin Orthop 1988;236:279–285.

    Google Scholar 

  • Frank C, Woo SL-Y, Amiel D, Harwood FL, Gomez M, Akeson W: Medial collateral ligament healing: A multidisciplinary assessment in rabbits. Am J Sports Med 1983;ll(6):379–389.

    Article  Google Scholar 

  • Fung YC: Stress-strain-history relations of soft tissues in simple elongation, in Fung YC, Perrone N, Anliker M (eds): Biomechanics: Its Foundations and Objectives. Englewood Cliffs, New Jersey, Prentice Hall 1972;181–208.

    Google Scholar 

  • Ginsburg JH and Elsasser JC: Problem areas in the diagnosis and treatment of ligament injuries of the knee. Clin Orthop 1978;132:201–205.

    Google Scholar 

  • Gomez MA: The effect of tension on normal and healing medial collateral ligaments. PhD thesis, University of California, San Diego, 1988.

    Google Scholar 

  • Gomez MA, Ishizue KK, Lyon RM, Kwan MK-W, Wayne JS, Furniss MA, Woo SL- Y: The effects of increased stress on medial collateral ligaments: an experimental and analytical approach. Trans of 34th annual ORS 1988;13:194.

    Google Scholar 

  • Grood ES, Noyes FR, Butler DL, Suntay WJ: Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg 1981;63A: 1257–1269.

    Google Scholar 

  • Gupta BN, Subraminian KN, Brinker WO, Gupta AN: Tensile strength of canine cranial cruciate ligaments. Am J Vet Res 1971;32:183–190.

    Google Scholar 

  • Hall DA: The ageing of connective tissue, Academic Press, London, 1976.

    Google Scholar 

  • Hama H, Yamamuro T, Takeda T: Experimental studies on connective tissue of the capsular ligament. Influences of aging and sex hormones. Acta Orthop Scand 1976;47:473–479.

    Google Scholar 

  • Hart DP and Dahners LE: Healing of the medial collateral ligament in rats: The effects of repair, motion, and secondary stabilizing ligaments. J Bone Joint Surg 1987;69A:1194–1199.

    Google Scholar 

  • Hastings DE: The non-operative management of collateral ligament injuries of the knee joint. Clin Orthop 1980;147:22–28.

    Google Scholar 

  • Haut RC, Little RW: Rheological properties of canine anterior cruciate ligaments. J Biomech 1969;2:289–298.

    Article  Google Scholar 

  • Holden DL, Eggert AW, Butler JE: The nonoperative treatment of Grade I and II medial collateral ligament injuries to the knee. Am J Sports Med 1983; 11:340–344.

    Article  Google Scholar 

  • Hollis JM, Horibe Sf Adams DJ, Marcin JP, Woo SL-Y: Force distribuion in the anterior cruciate ligament as a function of flexion angle. Biomech Symp AMD 1989;98:41–44.

    Google Scholar 

  • Hollis JM, Lyon RM, Marcin JP, Horibe S, Lee EB, Woo SL-Y: Effect of age and loading axis on the failure properties of the human ACL. Trans of 34th annual ORS 1988;13:81.

    Google Scholar 

  • Horwitz MT: Injuries of ligaments of knee joint: An experimental study. Arch Surg 1939;38:946–954.

    Google Scholar 

  • Hulten: Ueber die indireckten Brücke des Tibiakopfes nebst Beiträgen zur Röntgenologie des Kniegelenks. Acta Chir Scand (Supp. 15) 1929;66:1–167.

    Google Scholar 

  • Indelicato PA: Non-operative treatment of complete tears of the medial collateral ligament of the knee. J Bone Joint Surg 1983;65A(3):323–329.

    Google Scholar 

  • Inoue M, McGurk-Burleson E, Hollis JM: Treatment of the medial collateral ligament injury. 1. The importance of anterior cruciate ligament on the varusvalgus knee laxity. Am J Sports Med 1987;15:15–21.

    Article  Google Scholar 

  • Ishizue KK, Amiel D, Lyon RM, Woo SL-Y: Acute Hemarthrosis: A histological, biochemical and biomechanical correlation of effects on the anterior cruciate ligament in a rabbit model. J Orthop Res, In Press 1990.

    Google Scholar 

  • Jack EA: Experimental rupture of the medial collateral ligament of the knee. J Bone Joint Surg [Br] 1950;32B:396–402.

    Google Scholar 

  • Johnson RJ: The anterior cruciate ligament problem. Clin Orthop 1983;172:14–18.

    Google Scholar 

  • Kannus P: Long-term results of conservatively treated medial collateral ligament injuries of the knee joint. Clin Orthop 1988;226:103–111.

    Google Scholar 

  • Kappakas GS, Brown TD, Goodman MA, Kikuike A, McMaster JH: Delayed surgical repair of ruptured ligaments. Clin Orthop 1978;135:281–296.

    Google Scholar 

  • Kennedy JC and Fowler PJ: Medial and anterior instability of the knee. An anatomical and clinical study using stress machines. J Bone Joint Surg 1970;53 A: 1257–1270.

    Google Scholar 

  • Kennedy JC, Hawkins RJ, Willis RB: Strain gauge analysis of knee ligaments. Clin Orthop 1977;129:225–229.

    Google Scholar 

  • Kennedy JC, Weinberg HW, Wilson AS: The anatomy and function of the anterior cruciate ligament As determined by clinical and morphological studies. J Bone Joint Surg [Am] 1974;56A:223.

    Google Scholar 

  • Langenskoid A, Michelsson JE, Videman T: Osteroarthritis of the knee in the rabbit produced by immobilization. Acta Orthop Scan 1979;50:1–14.

    Article  Google Scholar 

  • Laros GS, Tipton CM, Cooper RR: Influence of physical activity on ligament insertions in the knees of dogs. J Bone Joint Surg [Am] 1971;53A(2):275–286.

    Google Scholar 

  • Larsen NP, Forwood MR, Parker AW: Immobilization and retraining of cruciate ligaments in the rat. Acta Orthop Scand 1987;58:260–264.

    Article  Google Scholar 

  • Lee TQ and Woo SL-Y: A new method for determining cross-sectional shape and area of soft tissues. J Biomech Eng 1988;110:110–114.

    Article  Google Scholar 

  • Lin H-C, Kwan MK-W, Woo SL-Y: On the stress relaxation properties of anterior cruciate ligament (ACL). Adv. Bioeng [WAM/ASME BED] 1987;3:5–6.

    Google Scholar 

  • Lyon RM, Billings E Jr, Woo SL-Y, Ishizue KK, Kitabayshi LR, Amiel D, Akeson WH: The ACL: A fibrocartilagenous structure. Trans, of 35th annual ORS. 1987;14:189.

    Google Scholar 

  • Lyon RM, Woo SL–Y, Hollis JM, Marcin JP, Lee EB: A new device to measure the structural properties of the femur–anterior cruciate ligament-tibia complex. J Biom. Engrg 1989;111:350–354.

    Article  Google Scholar 

  • Masoud I, Shapiro F, Kent R, Moses A: A longitudinal study of the growth of the New Zealand White rabbit: Cumulative and biweekly incremental growth rates for body length, body weight, femoral length, and tibial length. J Orthop Res 1986;4:221–231.

    Article  Google Scholar 

  • Matthews LS and Ellis D: Viscoelastic properties of cat tendon: Effects of time after death and preservation by freezing. J Biomech 1968;1:65–71.

    Article  Google Scholar 

  • Matyas JR, Frank C: Midsubstance injury of the rabbit MCL affects the tissue architecture of the femoral insertion. Trans, of 36th annual ORS, 1990a; 15(1):34.

    Google Scholar 

  • Matyas JR, Frank C: Midsubstance injury to the rabbit MCL causes changes similar to immobilization at the tibial insertion. Trans, of 36th annual ORS, 1990b;15(2):525.

    Google Scholar 

  • Mays PK, Bishop IE, Jaurent GJ: Age-related changes in the proportion of types I and ID collagen. Mech Ageing and Dev 1988;45:203–212.

    Article  Google Scholar 

  • McDaniel WJ and Dameron TB: Untreated ruptures of the anterior cruciate ligament: A follow-up study. J Bone Joint Surg [Am] 1980;62A:696–705.

    Google Scholar 

  • McDaniel WJ and Dameron TB: The untreated anterior cruciate ligament rupture. Clin Orthop 1983;172:158–163.

    Google Scholar 

  • McPherson GK, Mendenhall HV, Gibbons DF, et al.: Experimental, mechanical and histologic evaluation of the Kennedy ligament augmentation device. Clin Otrhop 1985;196:186–195.

    Google Scholar 

  • Meglan D, Zuelzer W, Buck W, Berme N: The effects of quadriceps force upon strain in the anterior cruciate ligament. Trans of 32nd annual ORS 1986;11:55.

    Google Scholar 

  • Miltner LJ, Hu CH, Fang HC: Experimental reproduction of joint sprain. Arch Surg 1937;35:234–240.

    Google Scholar 

  • Monohan JJ, Grigg P, Pappas AM, et al.: In vivo strain patterns in the four major canine knee ligaments. J Orthop Res 1984;2:408–418.

    Article  Google Scholar 

  • Muller P and Dahners LE: A study of ligamentous growth. Clin Orthop 1988;229:272–277.

    Google Scholar 

  • Newton PO, MacKenna DA, Danto MI, Kitabayashi LR, Woo SL-Y: Improved methodologies to differentiate the mechanical properties of the rabbit anterior cruciate ligament (ACL) and medial collateral ligament (MCL). Trans of 36th annual ORS 1990a;15(2):509.

    Google Scholar 

  • Newton PO, MacKenna DA, Kitabayashi LR, Akeson WH, Woo SL-Y: Biomechanical and ultrastructural changes in the rabbit anterior cruciate ligament (ACL) following immobilization. Trans of 36th annual ORS 1990b; 15(1):35.

    Google Scholar 

  • Nielson S, Andersen CK, Rasmussen O, Andersen A: Instability of cadaver knees after transection of capsule and ligaments. Acta Orthop Scan 1984;55:30–34.

    Article  Google Scholar 

  • Njus GO and Njus NM: A non-contact method for determining cross-sectional area of soft tissues. Trans Orthop Res Soc 1986;32:126.

    Google Scholar 

  • Noyes FR: Functional properties of knee ligaments and alterations induced by immobilization. A corresative biomechanical and histologial study in primates. Clin Orthop 1977;123:210–242.

    Google Scholar 

  • Noyes FR, DeLucas JL, Torvik PJ: Biomechanics of anterior cruciate ligament failure: an analysis of strain rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg 1974a;56A:236–253.

    Google Scholar 

  • Noyes FR and Grood ES: The strength of the anterior cruciate ligament in humans and rhesus monkeys. Age-related and species changes. J Bone Joint Surg 1976;58 A: 1074–1082.

    Google Scholar 

  • Noyes FR, Mooar PA, Matthews DS, Butler DL: The symptomatic anterior cruciate deficient knee - Part I: The long-term functional disability in athletically active individuals. J Bone Joint Surg 1983;65A: 154–162.

    Google Scholar 

  • Noyes FR, Torvik PJ, Hyde WB, DeLucas JL: Biomechanics of ligament failure. J Boiie Joint Surg 1974b;56A(7):1406–1418.

    Google Scholar 

  • O’Connor JJ, Goodfellow JW, Bradley JA: Quadriceps forces following mensical knee arthoplasty - an in vitro study. Trans of 34th annual ORS 1988;13:357.

    Google Scholar 

  • O’Donoghue DH: An analysis of end results of surgical treatment of major injuries tothe ligaments of the knee. J Bone Joint Surg 1955;37A: 1–13.

    Google Scholar 

  • O’Donoghue DH, Rockwood CA, Jack SC, Kenyon R: Repair of the anterior cruciate ligament in dogs. J Bone Joint Surg [Am] 1966;48A:503–519.

    Google Scholar 

  • Ohland KJ, Weiss JA, Wang CW, Woo SL-Y: The effects of age and sex on the biomechanical properties of the medial collateral ligament. ASME Biomech SympBED 1989;15:113–114.

    Google Scholar 

  • Palmer I: On the injuries to the ligaments of the knee joint. Acta Chir Scan (Supp) 1938;81:3–282.

    Google Scholar 

  • Pforringer W: Hamarthros and Kreuzbander - del 1. biomechanische untersuchangen.Unfallchirugie 1982;8:353–367.

    Article  Google Scholar 

  • Pollock RG, Soslowsky LJ, Bigliani LU, Flatow EL, Pawluk RJ, Mow VC: The mechanical properties of the inferior glenohumeral ligament. Trans, of 36th annual ORS 1990;15(2):510.

    Google Scholar 

  • Price CT and Allen WC: ligament repair of the knee with preservation of the meniscus. J Bone Joint Surg 1978;60A:61–65.

    Google Scholar 

  • Rauch G, Allzeit B, Gotzen L: Biomechanical studies on the tensile strength of the anterior cruciate ligament, with special reference to age-dependence. UnfaUchirugie 1988;91:437–443.

    Google Scholar 

  • Robins SP, Shimokomaki M, Bailey AJ: The chemistry of the collagen cross-links: Age-related changes in the reducible components of intact bovine collagen fibres. Biochem J 1973;131:771–780.

    Google Scholar 

  • Rundgren A and Viidik A: Graviditetens inverkan pa ledkomponenters mekaniska egenskaper. Nord Med 1972;86:1091.

    Google Scholar 

  • Sabiston P, Frank C, Lam T, Shrive N: Transplantation of the rabbit medial collateral ligament I. Biomechanical evaluation of fresh autografts. J Orthop Res 1990a;8(l):35–45.

    Article  Google Scholar 

  • Sabiston P, Frank C, Lam T, Shrive N: Transplantation of the rabbit medial collateral ligament II. Biomechanical evaluation of frozen/thawed allografts. J Orthop Res 1990b;8(l):46–56.

    Article  Google Scholar 

  • Sandberg R, Balkfors B, Nilsson B, Westlin N: Operative versus non-operative treatment of recent injuries to the ligaments of the knee. J Bone Joint Surg 1987;69A:1120–1126.

    Google Scholar 

  • Seering WP, Piziali RL, Nagel DA, Schurman DJ: The function of the primary ligaments of the knee in varus-valgus and axial rotation. J Biomech 1980;13:785–794.

    Article  Google Scholar 

  • Shikata J, Sanada H, Yamamuro T, Takeda T: Experimental studies of the elastic fiber of the capsular ligament: Influence of ageing and sex hormones on the hip joint capsule of rats. Conn Tissue Res 1979;7:21–27.

    Article  Google Scholar 

  • Straub T and Hunter RE: Acute anterior cruciate ligament repair. Clin Orthop 1988;227:238–250.

    Google Scholar 

  • Takai S, Adams DJ, Shoemaker DM, Woo SL-Y: Use of patellar tendon autografts for anterior cruciate ligament (ACL) reconstruction: A tissue engineering perspective. ASME Tissue Eng Symp 1989;107–110.

    Google Scholar 

  • Tipton CM, Martin RK, Matthes RD, Carey RA: Hydroxyproline concentrations in ligaments from trained and nontrained rats, in Poortmans HJ JR (ed): Metabolic Adaptation to Prolonged Physical Exercise. Basel, Birkhauser Verlag, 1975a;262–267.

    Google Scholar 

  • Tipton CM, Matthes RD, Martin RK: Influence of age and sex on the strength of bone-ligament junctions in knee joints of rats. J Bone Joint Surg 1978;60A:230–234.

    Google Scholar 

  • Tipton CM, Matthes RD, Maynard JA, Carey RA: The influence of physical activity on ligaments and tendons. Med Sci Sports 1975b;7(3):165–175.

    Google Scholar 

  • Tipton CM, Matthes RD, Vailas AC: Influences de Texercise sur les structuresligamentaires. In: Lacour J. ed. Facteurs limitant 1’endurance humaine. Saint- Etienne Conference, 1977;103–114.

    Google Scholar 

  • Tipton CM, Matthes RD, Vail as AC, Schnoebelen CL: The response of the Gal ago senegalensis to physical training. Comp Biochem Physiol 1979;63A:29–36.

    Article  Google Scholar 

  • Tipton CM, Vail as AC, Matthes RD: Experimental studies on the influences of physical activity on ligaments, tendons and joints: a brief review. Acta Med Scand [Suppl] 1986;711:157–168.

    Google Scholar 

  • Trent PS, Walker PS, Wolf B: Ligament length patterns, strength, and rotational axes of the knee joint. Clin Orthop 1976;117:263–270.

    Google Scholar 

  • Vailas AC, Tipton CM, Matthes RD, Gart M: Physical activity and its influence on the repair process of medial collateral ligaments. Connect Tissue Res 1981;9:25–31.

    Article  Google Scholar 

  • VanBrocklin JD and Ellis DG: A study of the mechanical behavior of toe extensor tendons under applied stress. Arch Phys Med 1965;46:369–373.

    Google Scholar 

  • Viidik A: The aging of collagen as reflected in its physical properties. In Engel A and Larsson T (eds): Aging of Connective and Skeletal Tissue. Thule International Symposia, Nordiska Bokhandelns Forlag, Stockholm, 1968a, pp. 125–148.

    Google Scholar 

  • Viidik A: Elasticity and tensile strength of the anterior cruciate ligament in rabbits as influenced by training. Acta Physiol Scand 1968b;74:372–330.

    Article  Google Scholar 

  • Viidik A, Lewin T: Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of postmortem storage. Acta Orthop Scand [Suppl] 1966;37:141–155.

    Article  Google Scholar 

  • Walker LB, Harris EH, Benedict JV: Stress-strain relationship in human cadaveric plantaris tendon: A preliminary study. Med Electron Biol Eng 1964;2:31–38.

    Article  Google Scholar 

  • Walsh S and Frank C: Two methods of ligament injury: A morphological comparison in a rabbit model. J Surg Res 1988;45:159–166.

    Article  Google Scholar 

  • Wang CW, Weiss JA, Albright J, Buckwalter JA, Martin R, Woo SL-Y: Life-long exercise and aging effects on the canine medial collateral ligament. Trans of 36th annual ORS, 1990;15(2):518.

    Google Scholar 

  • Warren RF and Marshall JL: Injuries of the anterior cruciate and medial collateral ligaments of the knee: A long term follow–up of 86 cases. Clin Orthop 1978;136:198–211.

    Google Scholar 

  • Warren RF, Marshall JL, Girgis F: The prime static stabilizers of the medial side of the knee. J Bone Joint Surg [Am] 1974;56A:665–674.

    Google Scholar 

  • Weaver JK, Derkash RS, Freeman JR, Kirk RE, Oden RR, Maty as J: Primary ligament repair - Revisited. Clin Orthop 1985;199:185–191.

    Google Scholar 

  • Weiss JA, Ohland KJ, Newton PO, Danto MI, Horibe S, Young EP, Woo SL-Y: A new injury model to study medial collateral ligament healing. Trans of 36th annual ORS, 1990;15(1):60.

    Google Scholar 

  • Whiteside LA and Sweeney RE: Nutrient pathways of the cruciate ligaments. An experimental study using the hydrogen washout technique. J Bone Joint Surg [Am] 1980;62A:1176.

    Google Scholar 

  • Woo SL-Y, Kuei SC, Gomez MA, Winters JM, Amiel D, Akeson WH: The effect of immobilization and exercise on the strength characteristics of bone-medial collateral ligament-bone complex. 1979 ASME biomech Symp AMD 1979;32:67–70.

    Google Scholar 

  • Woo SL-Y, Gomez MA, Akeson WH: The time and history dependent viscoelastic properties of the canine medial collateral ligament. J. Biomech. Engrg. 1981;103:293–298.

    Article  Google Scholar 

  • Woo SL-Y: Mechanical properties of tendons and ligaments I: static and nonlinear viscoelastic properties. Biorheology 1982a; 19:385–396.

    Google Scholar 

  • Woo SL-Y, Gomez MA, Woo YK, Akeson WH: Mechanical properties of tendonsand ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 1982b;19:397–408.

    Google Scholar 

  • Woo SL-Y, Gomez MA, Seguchi Y, Endo C, Akeson WH: Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1983;1:22–29.

    Article  Google Scholar 

  • Woo SL-Y, Orlando CA, Frank CB, Gomez MA, Akeson WH: Tensile properties of the medial collateral ligament as a function of age. J Orthop Res 1986a;4:133–141.

    Article  Google Scholar 

  • Woo SL-Y, Orlando CA, Camp JF, Akeson WH: Effects of post-mortem storage by freezing on ligament tensile behavior. J Biomech 1986b; 19:399–404.

    Article  Google Scholar 

  • Woo SL-Y, Gomez MA, Inoue M, Akeson WH: New experimental procedures to evaluate the properties of healing medial collateral ligaments. J Orthop Res 1987a;5:425–432.

    Article  Google Scholar 

  • Woo SL-Y, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH: The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg [Am] 1987b;69A(8): 1200–1211.

    Google Scholar 

  • Woo SL-Y, Lee TQ, Gomez MA, Sato S, Field FP: Temperature dependent behavior of the canine medial collateral ligament. J Biomech Eng 1987c; 109:68–71.

    Article  Google Scholar 

  • Woo SL-Y, Hollis JM, Roux RD, Gomez MA, Inoue M, Kleiner JB, Akeson WH: Effects of knee flexion on the structural properties of the rabbit femur-anterior cruciate ligament-tibia complex (FATC). J. Biomech 1987d;20(6):557–563.

    Article  Google Scholar 

  • Woo SL-Y, Weiss JA, Gomez MA, Hawkins DA: Measurement of changes in ligament tension with knee motion and skeletal maturation. J Biomech Engrg 1990a;l12:46–51.

    Article  Google Scholar 

  • Woo SL-Y, Young EP, Ohland K, Marcin J, Horibe S, Lin HC: The effects of anterior cruciate ligament transection on medial collateral ligament healing: An experimental study of the canine knee. J Bone Joint Surg 1990b;72A:382–392.

    Google Scholar 

  • Woo SL-Y, Peterson RH, Ohland KJ, Sites TJ, Danto MI: The effects of strain rate on the properties of the medial collateral ligaments in skeletally immature and mature rabbits: A biomechanical and histological study. J Orthop Res, 1990c; In Press.

    Google Scholar 

  • Zuckerman J, Stull GA: Effects of exercise on knee ligament separation force in rats. J Appl Physiol 1969;26(6):716–719.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Woo, S.LY., Weiss, J.A., MacKenna, D.A. (1990). Biomechanics and Morphology of the Medial Collateral and Anterior Cruciate Ligaments. In: Ratcliffe, A., Woo, S.LY., Mow, V.C. (eds) Biomechanics of Diarthrodial Joints. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3448-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3448-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8015-6

  • Online ISBN: 978-1-4612-3448-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation