Differential Forms Canonically Associated to Even-Dimensional Compact Conformal Manifolds

  • Chapter
Clifford Algebras

Part of the book series: Progress in Mathematical Physics ((PMP,volume 34))

Abstract

On a 6-dimensional, conformal, oriented and compact manifold M without boundary we compute a whole family of differential forms Ω6(f, h) of order 6 with f, h ξ C (M). Each of these forms will be symmetric on f and h, conformally invariant, and such that ∫ M f 0Ω6(f 1, f 2) defines a Hochschild 2-cocycle over the algebra C (M). In the particular 6-dimensional conformally flat case, we compute a unique form satisfying Wres(f 0[F,f][F, h])=∫M f 0Ω6(f, h) for the Fredholm module (H, F) associated by A. Connes [6] to the manifold M, and the Wodzicki residue Wres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. P. Branson, Automated symbolic computations in spin geometry, In Clifford Analysis and its Applications, F. Brackx, J.S.R. Chisholm, and V. Souček, eds., pp. 27–38. NATO Science Series II, Vol. 25, Kluwer Academic Publishers, Dordrecht, 2001.

    Chapter  Google Scholar 

  2. T. P. Branson, Differential operators canonically associated to a conformal structure, Math. Scand. 57 (1985), 293–345.

    MathSciNet  MATH  Google Scholar 

  3. T. Branson, An Anomaly associated with 4-dimensional quantum gravity, Commun. Math. Phys. 178 (1996), 301–309.

    Article  MathSciNet  MATH  Google Scholar 

  4. T.P. Branson, P.B. Gilkey, and Bent Ørsted, Leading terms in the heat invariants for the Laplacians of the de Rham, signature, and spin complexes, Math. Scand. 66 (1990), 307–319.

    MathSciNet  MATH  Google Scholar 

  5. T. Branson and B. Ørsted, Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc. 113 (1991), 669–682.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Connes, Quantized calculus and applications, XI-th International Congress of Mathematical Physics (Paris, 1994), pp. 15–36, Internal Press, Cambridge, MA, 1995.

    Google Scholar 

  7. A. Connes, Noncommutative Geometry Academic Press, London and San Diego, 1994.

    MATH  Google Scholar 

  8. A. R. Gover, L. I. Peterson, Conformally invariant powers of the Laplacian, Qcurvature and tractor calculus, math-ph/0201030.

    Google Scholar 

  9. J. M. Gracia-Bondía, J. C. Várilly and H. Figueroa, Elements of Nonconlmutative Geometry, Birkhauser Advanced Texts, Birkhäuser, Boston, 2001.

    Google Scholar 

  10. C. R. Graham, Conformally invariant powers of the Laplacian, II: Nonexistence, J. London Math. Soc. (2) 46 (1992), 566–576.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Graham, R. Jenne, L. Mason, and G. Sparling, Conformally invariant powers of the Laplacian, I: Existence, J. London Math. Soc. (2) 46 (1992), 557–565.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Kumano-go, Pseudo-Differential Operators, The MIT Press, Cambridge, Massachusetts, 1981.

    Google Scholar 

  13. J. M. Lee, A Mathematica package for doing tensor calculations in differential geometry, http://www.math.washington.edu/-Iee/Ricci/.

  14. W.J. Ugalde, Differentialforms canonically associated to even-dimensional compact conformal manifolds Thesis, ax**v:math.DG/0211240.

    Google Scholar 

  15. W.J. Ugalde, Differential forms and the Wodzicki residue, ax**v:math/DG0211361.

    Google Scholar 

  16. F. W. Warner, Foundations of Differential Manifolds and Lie Groups SpringerVerlag, New York, 1983.

    Google Scholar 

  17. M. Wodzicki, Noncommutative Residue, Part I. Fundamentals, K-Theory, arithmetic and geometry, (Moscow 1984–86), pp. 320–399, Lecture Notes in Mathematics, 1289, Springer, Berlin, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

Ugalde, W.J. (2004). Differential Forms Canonically Associated to Even-Dimensional Compact Conformal Manifolds. In: Abłamowicz, R. (eds) Clifford Algebras. Progress in Mathematical Physics, vol 34. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2044-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2044-2_14

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3525-1

  • Online ISBN: 978-1-4612-2044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation