Ratchet Scan and Disjoint Statistics

  • Chapter
Scan Statistics and Applications

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

A general definition of ratchet scan and disjoint statistics is given. The known results for the disjoint statistic, the linear ratchet scan statistic, and the circular ratchet scan statistic are reviewed. This concerns the exact and asymptotic distributions as well as exact bounds for the upper tail probabilities of the test statistics under the null hypothesis of no clustering. Further, results concerning the power of the tests in comparison with other tests for clustering are reported. In addition, certain modifications and extensions, e.g., the EMM procedure, the Grimson models, and the test ofHewitt et al. (1971)are studied. Finally, a general approach to derive exact upper and lower bounds for the tail probabilities of the general ratchet scan statistic is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barton, D. E. and David, F. N. (1959). Combinatorial extreme value distributionsMathematika 663–76.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolton, P., Pickles, A., Harrington, R., Macdonald, H. and Rutter, M. (1992). Season of birth: issues, approaches and findings for autismJournal of Child Psychology and Psychiatry 33509–530.

    Article  Google Scholar 

  3. Cohen, P. (1994). Is duodenal ulcer a seasonal disease? Statistical considerationsAmerican Journal of Gastroenterology 891121–1122.

    Google Scholar 

  4. Cohen, P. (1995). Seasonality in duodenal ulcer disease: possible relationship with circannually cycling neurons enclosed in the biological clockAmerican Journal of Gastroenterology 901189–1190.

    Google Scholar 

  5. David, F. N. and Barton, D. E. (1962).Combinatorial ChanceLondon, England: Charles Griffin.

    Google Scholar 

  6. David, H. A. and Newell, D. J. (1965). The identification of annual peak periods for a diseaseBiometrics 21645–650.

    Article  Google Scholar 

  7. Dawson, D. A. and Sankoff, D. (1967). An inequality for probabilitiesProceedings of the American Mathematical Society 18504–507.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ederer, F., Myers, M. H. and Mantel, N. (1964). A statistical problem in space and time: Do leukemia cases come in clusters?Biometrics 20626–638.

    Article  Google Scholar 

  9. Edwards, J. H. (1961). The recognition and estimation of cyclic trendsAnnals of Human Genetics 2583–86.

    Article  MathSciNet  Google Scholar 

  10. Feller, W. (1968). AnIntroduction to Probability Theory and Its ApplicationsVolumeI3 Edition, New York: John Wiley&Sons.

    MATH  Google Scholar 

  11. Fraumeni, J. F., Ederer, F. and Handy, V. H. (1966). Temporal-spatial distribution of childhood leukemia in New York State, special reference to case clustering by year of birthCancer 19996–1000.

    Article  Google Scholar 

  12. Freedman, L. S. (1979). The use of a Kolmogorov-Smirnov type statistic in testing hypotheses about seasonal variationJournal of Epidemiology and Community Health 33223–228.

    Article  Google Scholar 

  13. Freeman, P. R. (1979). Algorithm AS 145: Exact distribution of the largest multinomial frequencyApplied Statistics 28333–336.

    Article  MathSciNet  MATH  Google Scholar 

  14. Galambos, J (1977). Bonferroni inequalitiesAnnals of Probability 5577–581.

    Article  MathSciNet  MATH  Google Scholar 

  15. Good, I. J. (1957). Saddle-point methods for the multinomial distributionAnnals of Mathematical Statistics 28861–881.

    Article  MathSciNet  Google Scholar 

  16. Gould, M. S., Petrie, K., Kleinman, M. H. and Wallenstein, S. (1994). Clustering of attempted suicide: New Zealand national dataInternational Journal of Epidemiology 231185–1189.

    Article  Google Scholar 

  17. Greenwood, R. E. and Glasgow, M. O. (1950). Distribution of maximum and minimum frequencies in a sample drawn from a multinomial distributionAnnals of Mathematical Statistics 21416–424.

    Article  MathSciNet  MATH  Google Scholar 

  18. Grimson, R. C. (1979). The clustering of diseaseMathematical Biosciences 46257–278.

    Article  MathSciNet  MATH  Google Scholar 

  19. Grimson, R. C. (1993). Disease clusters, exact distributions of maxima, and P-valuesStatistics in Medicine 121773–1794.

    Article  Google Scholar 

  20. Grimson, R. C. and Oden, N. (1996). Disease clusters in structured environmentsStatistics in Medicine 15851–871.

    Article  Google Scholar 

  21. Hewitt, D., Milner, J., Csima, A. and Pakula, A. (1971). On Edwards’ criterion of seasonality and a non-parametric alternativeBritish Journal of Preventive and Social Medicine 25174–176.

    Google Scholar 

  22. Jogdeo, K. and Patil, G. P. (1975). Probability inequalities for certain multivariate discrete distributionSankhya Series B 37158–164.

    MathSciNet  MATH  Google Scholar 

  23. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997).Discrete Multivariate DistributionsNew York: John Wiley&Sons.

    MATH  Google Scholar 

  24. Johnson, N. L. and Young, D. H. (1960). Some applications of two approximations to the multinomial distributionBiometrika 47463–469.

    MATH  Google Scholar 

  25. Kotz, S. and Balakrishnan, N. (1997). Advances in urn models during the past two decades, InAdvances in Combinatorial Methods and Applications to Probability and Statistics(Ed., N. Balakrishnan), pp. 203–256, Boston: Birkhaüser.

    Chapter  Google Scholar 

  26. Kounias, E. G. (1968). Bounds for the probability of a union, with applicationsAnnals of Mathematical Statistics 392154–2158.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kounias, E. and Marin, J. (1974). Best linear Bonferroni bounds, InProceedings of the Prague Symposium on Asymptotic Statistics, Vol. II(Ed., J. Hájek), pp. 179–213, Prague, Czech Republic: Charles University.

    Google Scholar 

  28. Kozelka, R. M. (1956). Approximate upper percentage points for extreme values in multinomial samplingAnnals of Mathematical Statistics 27507–512.

    Article  MathSciNet  MATH  Google Scholar 

  29. Krauth, J. (1991). Bounds for the upper tail probabilities of the multivariate disjoint testBiometrie und Informatik in Medizin und Biologie 22147–155.

    Google Scholar 

  30. Krauth, J. (1992a). Bounds for the upper tail-probabilities of the circular ratchet scan statisticBiometrics 481177–1185.

    Article  MathSciNet  Google Scholar 

  31. Krauth, J. (1992b). Bounds for the tail-probabilities of the linear ratchet scan statistic, InAnalyzing and Modeling Data and Knowledge(Ed., M. Schader), pp. 51–61, Berlin, Germany: Springer-Verlag.

    Google Scholar 

  32. Krauth, J. (1993). Spatial clustering of species based on quadrat sampling, InInformation and Classification(Eds., O. Opitz, B. Lausen and E. Klar), pp. 17–23, Berlin, Germany: Springer-Verlag.

    Chapter  Google Scholar 

  33. Krauth, J. (1996a). Spatial clustering of neurons by hypergeometric disjoint statistics, InFrom Data to Knowledge (Eds.W. Gaul and D. Pfeifer), pp. 253–261, Berlin, Germany: Springer-Verlag.

    Chapter  Google Scholar 

  34. Krauth, J. (1996b). Bounds for p-values of combinatorial tests for clustering in epidemiology, InAnalysis and Information Systems(Eds., H. H. Bock and W. Polasek), pp. 64–72, Berlin, Germany: Springer-Verlag.

    Chapter  Google Scholar 

  35. Kwerel, S. M. (1975). Most stringent bounds on aggregated probabilities of partially specified dependent probability systemsJournal of the American Statistical Association 70472–479.

    Article  MathSciNet  MATH  Google Scholar 

  36. Levin, B. (1981). A representation for multinomial cumulative distribution functionsAnnals of Statistics 91123–1126.

    Article  MathSciNet  MATH  Google Scholar 

  37. Levin, B. (1983). On calculations involving the maximum cell frequencyCommunications in Statistics-Theory and Methods 121299–1327.

    Article  MATH  Google Scholar 

  38. Mallows, C. L. (1968). An inequality involving multinomial probabilitiesBiometrika 55422–424.

    Article  MATH  Google Scholar 

  39. Mantel, N. (1967). The detection of disease clustering and a generalized regression approachCancer Research 27209–220.

    Google Scholar 

  40. Mantel, N., Kryscio, R. J. and Myers, M. H. (1976). Tables and formulas for extended use of the Ederer-Myers-Mantel disease-clustering procedureAmerican Journal of Epidemiology 104576–584.

    Google Scholar 

  41. Marrero, O. (1983). The performance of several statistical tests for seasonality in monthly dataJournal of Statistical Computation and Simulation 17275–296.

    Article  Google Scholar 

  42. Marrero, O. (1988). The power of a nonparametric test for seasonalityBiometrical Journal 30495–502.

    Article  Google Scholar 

  43. Marrero, O. (1992). A maximum rank-sum test for one-pulse variation in monthly dataBiometrical Journal 34485–500.

    Article  Google Scholar 

  44. McKnight, R. H., Kryscio, R. J., Mays, J. R. and Rodgers, G. C. (1996). Spatial and temporal clustering of an occupational poisoning: the example of Green Tobacco SicknessStatistics in Medicine 15747–757.

    Article  Google Scholar 

  45. Naus, J. I. (1966). A power comparison of two tests of non-random clusteringTechnometrics 8493–517.

    MathSciNet  MATH  Google Scholar 

  46. Owen, D. B. and Steck, G. P. (1962). Moments of order statistics from the equicorrelated multivariate normal distributionAnnals of Mathematical Statistics 331286–1291.

    Article  MathSciNet  MATH  Google Scholar 

  47. Proschan, F. and Sethuraman, J. (1975). Simple multivariate inequality using associationTheory of Probability and Its Applications 20193–195.

    Article  MathSciNet  MATH  Google Scholar 

  48. Rogerson, P. A. (1996). A generalization of Hewitt’s test for seasonalityInternational Journal of Epidemiology 25644–648.

    Article  Google Scholar 

  49. Stark, C. R. and Mantel, N. (1967a). Lack of seasonal-or temporal-spatial clustering of Down’s syndrome births in MichiganAmerican Journal of Epidemiology 86199–213.

    Google Scholar 

  50. Stark, C. R. and Mantel, N. (1967b). Temporal-spatial distribution of birth dates for Michigan children with leukemiaCancer Research 271749–1775.

    Google Scholar 

  51. Viktorova, I. I. (1969). Asymptotic behavior of maximum of an equiprobable polynomial schemeMathematical Notes 5184–191.

    Article  MathSciNet  MATH  Google Scholar 

  52. Viktorova, I. I. and Sevastyanov, B. A. (1967). Limit behavior of the maximum in a polynomial representationMathematical Notes 1220–225.

    Article  MATH  Google Scholar 

  53. Wallenstein, S., Gould, M. S. and Kleinman, M. (1989a). Use of the scan statistic to detect time-space clusteringAmerican Journal of Epidemiology 1301057–1064.

    Google Scholar 

  54. Wallenstein, S., Weinberg, C. R. and Gould, M. (1989b). Testing for a pulse in seasonal event dataBiometrics 45817–830.

    Article  MATH  Google Scholar 

  55. Walter, S. D. (1980). Exact significance levels for Hewitt’s test for seasonalityJournal of Epidemiology and Community Health 34147–149.

    Article  Google Scholar 

  56. Walter, S. D. and Elwood, J. M. (1975). A test for seasonality of events with a variable population at riskBritish Journal of Preventive and Social Medicine 2918–21.

    Google Scholar 

  57. Ward, D. L. (1992). Guillan-Barré syndrome and influenza vaccination in the US army, 1980–1988American Journal of Epidemiology 136374–375.

    Google Scholar 

  58. Wartenberg, D. and Greenberg, M. (1990). Detecting disease clusters: the importance of statistical powerAmerican Journal of Epidemiology 132156–166.

    Google Scholar 

  59. Yates, F. (1934). Contingency tables involving small numbers and the X2 testJournal of the Royal Statistical Society 1217–235.

    Google Scholar 

  60. Yusas, I. S. (1972). On the distribution of the maximum frequency of a multinomial distributionTheory of Probability and Its Applications 17712–717.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krauth, J. (1999). Ratchet Scan and Disjoint Statistics. In: Glaz, J., Balakrishnan, N. (eds) Scan Statistics and Applications. Statistics for Industry and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1578-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1578-3_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7201-4

  • Online ISBN: 978-1-4612-1578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation