A Mathematical and Numerical Model for Finite Elastoplastic Deformations in Fluid Saturated Porous Media

  • Chapter
Modeling and Mechanics of Granular and Porous Materials

Abstract

Finite elastic or elastoplastic strains in fluid saturated soils are studied. Isothermal and quasi-static loading conditions are considered. The governing equations at the macroscopic level are derived in a spatial and a material setting. The constituents are assumed to be materially incompressible at the microscopic level. The elasto-plastic behaviour of the solid skeleton is described by the multiplicative decomposition of the deformation gradient into an elastic and a plastic part; the elasto-plastic evolution laws are developed in the spatial setting. The Kirchhoff effective stress tensor and logarithmic principal strains are used in conjunction with an hyperelastic free energy function. The effective stress state is limited by the von Mises or the Drucker-Prager yield surface with isotropic hardening. Algorithmically, a particular “apex formulation” is advocated for the latter case. The fluid is assumed to obey Darcy’s law. The consistent linearisation of the fully non-linear coupled system of equations is derived. A spatial finite element formulation is presented. Numerical examples highlight the developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.H.Advani, T.S. Lee, J.K. Lee, C.S. Kim: Hygrothermomechanical evaluation of porous media under finite deformation. Part. I - Finite element formulationsInt. J. Num. Meth. Eng.36, pp. 147–160, 1993.

    Article  MATH  Google Scholar 

  2. F. Armero: Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditionsComput. Methods Appl. Mech. Eng.171, pp. 205–241, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bluhm, R. De Boer: The volume fraction concept in the porous media theoryZAMM Z. Angew. Math. Mech.77, pp. 563–577, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.I. Borja, E. Alarcon: A mathematical framework for finite strain elastoplastic consolidation. Part 1: balance laws, variational formulation and linearizationComputer Meth. Appl. Mech. Eng.122, pp. 145–171, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.I. Borja, C. Tamagnini: Numerical implementation of a mathematical model for finite strain elastoplastic consolidation, in: D.R.J. OWEN, E. ONATE, E. HINTON (eds.):Computational Plasticity - Fundamentals and ApplicationsCIMNE, Barcelona, 1997, pp. 1631–1640.

    Google Scholar 

  6. P.G. Ciarlet:Mathematical Elasticity. Volume I: Three-Dimensional ElasticityElsevier Science Publishers, Amsterdam, 1988.

    MATH  Google Scholar 

  7. R. De Boer:Theory of Porous Media: Highlights in Historical Development and Current StateSpringer, Berlin, 2000.

    MATH  Google Scholar 

  8. J. Desrues, R. Chambon, W. Hammad, R. Charlier: Soil mod-elling with regard to consistency: Cloe, a new rate type constitutive model, in: C.S. DESAI, S. KREMPL (eds.):3rd Int. Conf. Constitutive Laws for Eng. Materials TucsonASME press, 1991, pp. 399–402.

    Google Scholar 

  9. S. Diebels, W. Ehlers: Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non-linearitiesInt. J. Numer. Meth. Eng.39, pp. 81–97, 1996.

    Article  MATH  Google Scholar 

  10. D.C. Drucker, W. Prager: Soil mechanics and plastic analysis or limit designQuart.Appl. Math.10, pp. 157–165, 1952.

    MathSciNet  MATH  Google Scholar 

  11. W. Ehlers, G. Eipper: Finite elastic deformation in liquid-saturated and empty porous solidsTrans. Porous Media34, pp. 179–191, 1999.

    Article  MathSciNet  Google Scholar 

  12. D. Gawin, L. Sanavia, B.A. Scherfler: Cavitation modelling in saturated geomaterials with application to dynamic strain localisationInt. J. Num. Meth. Fluids27, pp. 109–125, 1998.

    Article  MATH  Google Scholar 

  13. W.G. Gray, M. Hassanizadeh: Unsaturated flow theory including interfacial phenomenaWater Resour. Res.27, pp. 1855–1863, 1991.

    Article  Google Scholar 

  14. M. Hassanizadeh, W.G. Gray: General conservation equations for multi-phase system: 1. Averaging technique; 2. Mass, Momenta, Energy and Entropy EquationsAdv. Water Res. 2, pp. 191–201/131–144, 1979.

    Google Scholar 

  15. M. Hassanizadeh, W.G. Gray: General conservation equations for multi-phase system: 3. Constitutive theory for porous media flowAdv. Water Res.3, pp. 25–40, 1980.

    Article  Google Scholar 

  16. G. Hofstetter, R.L. Taylor: Non-associative Drucker-Prager plasticity at finite strainsComm. Appl. Num. Meth. Engrg.6, pp. 583–589, 1990.

    Article  MATH  Google Scholar 

  17. E.H. LEE: Elastic-plastic deformation at finite strainsJ. Appl. Mech.36, pp. 1–6, 1969.

    Article  MATH  Google Scholar 

  18. R.W. Lewis, B.A. Schrefler:The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous MediaJohn Wiley and Sons, New York, 1998.

    MATH  Google Scholar 

  19. J.E. Marsden, T.J.R. Hughes:Mathematical Foundations of ElasticityPrentice Hall Inc., Upper Saddle River, New Jersey, 1983.

    Google Scholar 

  20. E. Meroi, B.A. Schrefler, O.C. Zienkiewicz: Large strain static and dynamic semi-saturated soil behaviourInt. J. Num. Anal. Meth. Geomech.19, pp. 81–106, 1995.

    Article  MATH  Google Scholar 

  21. C. Miehe: Computation of isotropic tensor functionsComm. Num. Meth. Eng.9, pp. 889–896, 1993.

    Article  MATH  Google Scholar 

  22. M. Mokni, J. Desrues: Strain localisation measurements in undrained plane-strain biaxial tests on Hostun RF sandMech. Coh.-Frict. Mater.4, pp. 419–441, 1998.

    Article  Google Scholar 

  23. S. Nemat-Nasser: On finite plastic flow of crystalline solids and geomaterialsTrans. ASME50, pp. 1114–1126, 1983.

    Article  MATH  Google Scholar 

  24. J.F. Peters, P.V. Lade, A. Bro: Shear band formation in triaxial and plane strain tests, in: R.T. DONAGHE, R.C. CHANEY, M.L. SILVER (eds.):AdvancedTriaxialTesting of Soil and Rock, Am. Soc. Testing and Materials 977, Philadelphia, 1988, pp. 604–615.

    Google Scholar 

  25. S. Reese: Elastopastic material behaviour with large elastic and large plastic deformationZAMM Z. Angew. Math. Mech. 77, pp. S277–S278, 1997.

    MATH  Google Scholar 

  26. B.A. Schrefler, L. Sanavia, C.E. Majorana: A multiphase medium model for localisation and postlocalisation simulation in geomaterialsMech. Coh.-Frict. Mater.1, pp. 95–114, 1996.

    Article  Google Scholar 

  27. J.C. SIMO: Numerical analysis and simulation of plasticity, in: P.G. CIARLET, J.L. LIONS (eds.): Numerical methods for solids (Part 3)Handbook of Numerical Analysis 6North-Holland, Amsterdam, 1998.

    Google Scholar 

  28. J.C. Simo, T.J.R. Hughes:Computational InelasticitySpringer, Berlin, 1998.

    MATH  Google Scholar 

  29. J.C. Simo, R. Taylor: Consistent tangent operators for rate-independent elastoplasticityComp. Meth. Applied Mech. Eng.48, pp. 101–118, 1985.

    Article  MATH  Google Scholar 

  30. P. Steinmann: A finite element formulation for strong discontinuities in fluid-saturated porous mediaMech. Coh.-Frict. Mater. 4, pp. 133–152, 1999.

    Article  Google Scholar 

  31. I. VardoulakisJ.SULEM: Bifurcation Analysis in Geomechanics, Blakie Academic and Professional, London, 1995.

    Google Scholar 

  32. P. Wriggers: Continuum mechanics, non-linear finite element techniques and computational stability, in: E. STEIN (ed.):Progress in Computational Analysis of Inelastic Structures CISM 321, Springer-Verlag, Wien-New York, 1993.

    Google Scholar 

  33. H.W. Zhang, L. Sanavia, B.A. Schrefler: An internal length scale in strain localisation of multiphase porous mediaMech. Coh.Frict. Mater.4, pp. 433–460, 1999.

    Google Scholar 

  34. H.W. Zhang, L. Sanavia, B.A. Schrefler: Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity modelComp. and Struct.79, pp. 441–459, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanavia, L., Schrefler, B.A., Steinmann, P. (2002). A Mathematical and Numerical Model for Finite Elastoplastic Deformations in Fluid Saturated Porous Media. In: Capriz, G., Ghionna, V.N., Giovine, P. (eds) Modeling and Mechanics of Granular and Porous Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0079-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0079-6_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6603-7

  • Online ISBN: 978-1-4612-0079-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation