Stem Cells: The Holy Grail of Regenerative Medicine

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Recent advancement in understanding the complex characters and interdependent molecular pathways of biological diseases led to a new therapeutic approach of “Biological Solutions to Biological Diseases.” Stem cells that reside at the apex of cellular hierarchy are now considered as “Therapeutic wonders” due to their multilineage differentiation and self-renewal properties. These cells depending upon their differentiation potency and site of origin are being widely experimented for therapeutic purpose with emerging success in clinical application. The challenge posed by ethical problems and teratoma formation of embryonic stem (ES) cells; rare occurrence of tissue-specific adult stem cells has recently been overcome by the creation of dedifferentiated induced pluripotent stem cells (iPSCs) from mature differentiated cells. Research in stem cell therapy involves novel strategies for directed differentiation of ES cells, adult stem cells, and iPSCs in vitro; temporal and spatial monitoring of in vivo differentiation and functional output and final validation in human patients. In this chapter, we will review the detailed investigations currently undergoing in stem cell biology and their clinical applicability, which might bring revolutions in future patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Google Scholar 

  2. Akopian V, Andrews PW, Beil S, Benvenisty N, Brehm J, Christie M, Ford A, Fox V, Gokhale PJ, Healy L, Holm F, Hovatta O, Knowles BB, Ludwig TE, McKay RD, Miyazaki T, Nakatsuji N, Oh SK, Pera MF, Rossant J, Stacey GN, Suemori H (2010) Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. Vitro Cell Dev Biol Anim 46(3–4):247–258. doi:10.1007/s11626-010-9297-z

    Google Scholar 

  3. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971–974. doi:10.1038/nbt1001-971

    Google Scholar 

  4. Lei T, Jacob S, Ajil-Zaraa I, Dubuisson JB, Irion O, Jaconi M, Feki A (2007) Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res 17(8):682–688. doi:10.1038/cr.2007.61

    Google Scholar 

  5. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95

    Google Scholar 

  6. Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL, Melton D (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5(4):258–265. doi:10.1038/nchembio.154

    Google Scholar 

  7. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452. doi:10.1038/nbt1393

    Google Scholar 

  8. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720. doi:10.1016/S0140-6736(12)60028-2

    Google Scholar 

  9. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348(3):255–256. doi:10.1056/NEJM200301163480314

    Google Scholar 

  10. Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U, Anderson WF, Wagner EF, Gilboa E (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad of Sci USA. 83(10):3194–3198

    Google Scholar 

  11. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Google Scholar 

  12. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M (2000) Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406(6791):82–86. doi:10.1038/35017565

    Google Scholar 

  13. Vadhan-Raj S, Patel S, Bueso-Ramos C, Folloder J, Papadopolous N, Burgess A, Broemeling LD, Broxmeyer HE, Benjamin RS (2003) Importance of predosing of recombinant human thrombopoietin to reduce chemotherapy-induced early thrombocytopenia. J Clinc Oncol 21(16):3158–3167. doi:10.1200/JCO.2003.08.003

    Google Scholar 

  14. Panuganti S, Schlinker AC, Lindholm PF, Papoutsakis ET, Miller WM (2013) Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: toward large-scale platelet production. Tissue Eng Part A 19(7–8):998–1014. doi:10.1089/ten.TEA 2011.0111

    Google Scholar 

  15. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6(11):1229–1234. doi:10.1038/81326

    Google Scholar 

  16. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92

    Google Scholar 

  17. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340

    Google Scholar 

  18. Polisetty N, Fatima A, Madhira SL, Sangwan VS, Vemuganti GK (2008) Mesenchymal cells from limbal stroma of human eye. Mol Vis 14:431–442

    Google Scholar 

  19. Chan BP, Hui TY, Wong MY, Yip KH, Chan GC (2010) Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering. Tissue Eng Part C Methods 16(2):225–235. doi:10.1089/ten.tec.2008.0709

    Google Scholar 

  20. Sumanasinghe RD, Bernacki SH, Loboa EG (2006) Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459–3465. doi:10.1089/ten.2006.12.3459

    Google Scholar 

  21. Sumanasinghe RD, Osborne JA, Loboa EG (2009) Mesenchymal stem cell-seeded collagen matrices for bone repair: effects of cyclic tensile strain, cell density, and media conditions on matrix contraction in vitro. J Biomed Mater Res A 88(3):778–786. doi:10.1002/jbm.a.31913

    Google Scholar 

  22. Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14(2):199–215. doi:10.1089/ten.teb2007.0435

    Google Scholar 

  23. Kim HJ, Kim UJ, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42(6):1226–1234. doi:10.1016/j.bone.2008.02.007

    Google Scholar 

  24. Li C, Vepari C, ** HJ, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124. doi:10.1016/j.biomaterials.2006.01.022

    Google Scholar 

  25. Mieszawska AJ, Fourligas N, Georgakoudi I, Ouhib NM, Belton DJ, Perry CC, Kaplan DL (2010) Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials 31(34):8902–8910. doi:10.1016/j.biomaterials.2010.07.109

    Google Scholar 

  26. Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31(26):6772–6781. doi:10.1016/j.biomaterials.2010.05.047

    Google Scholar 

  27. Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ (2010) In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J Biomed Mater Res A 95(3):673–681. doi:10.1002/jbm.a.32884

    Google Scholar 

  28. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28(10):1830–1837. doi:10.1016/j.biomaterials.2006.11.050

    Google Scholar 

  29. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering–an overview. Mar Drugs 8(8):2252–2266. doi:10.3390/md8082252

    Google Scholar 

  30. Shoae-Hassani A, Mortazavi-Tabatabaei SA, Sharif S, Seifalian AM, Azimi A, Samadikuchaksaraei A, Verdi J (2013) Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. J Tissue Eng Regen Med. doi:10.1002/term.1632

  31. Mummery CL, Davis RP, Krieger JE (2010) Challenges in using stem cells for cardiac repair. Sci Transl Med 2(27):27ps17. doi:10.1126/scitranslmed.3000558

  32. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14(4–6):311–324. doi:10.1159/000080341

    Google Scholar 

  33. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705. doi:10.1172/JCI5298

    Google Scholar 

  34. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    Google Scholar 

  35. Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, Lee RT (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107(14):1912–1916. doi:10.1161/01.CIR.0000064899.53876.A3

    Google Scholar 

  36. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    Google Scholar 

  37. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Google Scholar 

  38. Mruthyunjaya S, Manchanda R, Godbole R, Pujari R, Shiras A, Shastry P (2010) Laminin-1 induces neurite outgrowth in human mesenchymal stem cells in serum/differentiation factors-free conditions through activation of FAK-MEK/ERK signaling pathways. Biochem Biophys Res Commun 391(1):43–48. doi:10.1016/j.bbrc.2009.10.158

    Google Scholar 

  39. Vecellio M, Meraviglia V, Nanni S, Barbuti A, Scavone A, DiFrancesco D, Farsetti A, Pompilio G, Colombo GI, Capogrossi MC, Gaetano C, Rossini A (2012) In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors. PLoS ONE 7(12):e51694. doi:10.1371/journal.pone.0051694

    Google Scholar 

  40. Zouani OF, Kalisky J, Ibarboure E, Durrieu MC (2013) Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate. Biomaterials 34(9):2157–2166. doi:10.1016/j.biomaterials.2012.12.007

    Google Scholar 

  41. Fatima A, Sangwan VS, Iftekhar G, Reddy P, Matalia H, Balasubramanian D, Vemuganti GK (2006) Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation. J Postgrad Med 52(4):257–261

    Google Scholar 

  42. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640

    Google Scholar 

  43. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Google Scholar 

  44. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Google Scholar 

  45. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. doi:10.1126/science.1151526

    Google Scholar 

  46. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317. doi:10.1038/nature05934

    Google Scholar 

  47. Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 30(8):1487–1493. doi:10.1038/jcbfm.2010.32

    Google Scholar 

  48. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384. doi:10.1016/j.stem.2009.04.005

    Google Scholar 

  49. Blelloch R, Venere M, Yen J, Ramalho-Santos M (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1(3):245–247. doi:10.1016/j.stem.2007.08.008

    Google Scholar 

  50. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388. doi:10.1016/j.stem.2011.03.001

    Google Scholar 

  51. Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, Jiang W, Cai J, Liu M, Cui K, Qu X, **ang T, Lu D, Chi X, Gao G, Ji W, Ding M, Deng H (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3(6):587–590. doi:10.1016/j.stem.2008.10.014

    Google Scholar 

  52. Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, **ao H, **ao L (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4(1):11–15. doi:10.1016/j.stem.2008.11.013

    Google Scholar 

  53. Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad of Sci USA 106(27):10993–10998. doi:10.1073/pnas.0905284106

    Google Scholar 

  54. Shimada H, Nakada A, Hashimoto Y, Shigeno K, Shionoya Y, Nakamura T (2010) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77(1):2. doi:10.1002/mrd.21117

    Google Scholar 

  55. Wu Y, Zhang Y, Mishra A, Tardif SD, Hornsby PJ (2010) Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. Stem Cell Res 4(3):180–188. doi:10.1016/j.scr.2010.02.003

    Google Scholar 

  56. Honda A, Hirose M, Hatori M, Matoba S, Miyoshi H, Inoue K, Ogura A (2010) Generation of induced pluripotent stem cells in rabbits: potential experimental models for human generative medicine. J Biol Chem 285(41):31362–31369. doi:10.1074/jbc.M110.150540

    Google Scholar 

  57. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7(3):693–702. doi:10.1007/s12015-011-9239-5

    Google Scholar 

  58. Lu Y, West FD, Jordan BJ, Mumaw JL, Jordan ET, Gallegos-Cardenas A, Beckstead RB, Stice SL (2012) Avian-induced pluripotent stem cells derived using human reprogramming factors. Stem Cells Dev 21(3):394–403. doi:10.1089/scd2011.0499

    Google Scholar 

  59. Yoshikawa T, Samata B, Ogura A, Miyamoto S, Takahashi J (2013) Systemic administration of valproic acid and zonisamide promotes differentiation of induced pluripotent stem cell-derived dopaminergic neurons. Front Cell Neurosci 7:11. doi:10.3389/fncel.2013.00011

    Google Scholar 

  60. Mekala SR, Vauhini V, Nagarajan U, Maddileti S, Gaddipati S, Mariappan I (2013) Derivation, characterization and retinal differentiation of induced pluripotent stem cells. J Biosci 38(1):123–134

    Google Scholar 

  61. Nishimura K, Takahashi J (2013) Therapeutic application of stem cell technology toward the treatment of Parkinson’s disease. Biol Pharma Bull. 36(2):171–175

    Google Scholar 

  62. Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, Song X, Guo Y, Zhao Y, Qin H, Yin X, Wu C, Che J, Lu S, Ding M, Deng H (2009) Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19(11):1233–1242. doi:10.1038/cr.2009.107

    Google Scholar 

  63. Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z, Payne CM, Dalgetty D, Black JR, Ross JA, Samuel K, Wang G, Daley GQ, Lee JH, Church GM, Forbes SJ, Iredale JP, Wilmut I (2010) Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 51(1):329–335. doi:10.1002/hep.23335

    Google Scholar 

  64. Kobari L, Yates F, Oudrhiri N, Francina A, Kiger L, Mazurier C, Rouzbeh S, El-Nemer W, Hebert N, Giarratana MC, Francois S, Chapel A, Lapillonne H, Luton D, Bennaceur-Griscelli A, Douay L (2012) Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica 97(12):1795–1803. doi:10.3324/haematol.2011.055566

    Google Scholar 

  65. Pouya A, Satarian L, Kiani S, Javan M, Baharvand H (2011) Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination. PLoS ONE 6(11):e27925. doi:10.1371/journal.pone.0027925

    Google Scholar 

  66. Aravalli RN, Cressman EN, Steer CJ (2012) Hepatic differentiation of porcine induced pluripotent stem cells in vitro. Vet J 194(3):369–374. doi:10.1016/j.tvjl.2012.05.013

    Google Scholar 

  67. Georgakoudi I, Rice WL, Hronik-Tupaj M, Kaplan DL (2008) Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng Part B Rev 14(4):321–340. doi:10.1089/ten.teb2008.0248

    Google Scholar 

  68. Huh S, Ker DF, Bise R, Chen M, Kanade T (2011) Automated mitosis detection of stem cell populations in phase-contrast microscopy images. IEEE Trans Med Imaging 30(3):586–596. doi:10.1109/TMI.2010.2089384

    Google Scholar 

  69. S-iH Sungeun Eom, Ker Dai Fei Elmer, Bise Ryoma, Kanade Takeo (2007) Tracking of hematopoietic stem cells in microscopy images for lineage determination. J Latex Class Files 6(01–09):9

    Google Scholar 

  70. Jang YY, Ye Z, Cheng L (2011) Molecular imaging and stem cell research. Mol Imagings 10(2):111–122

    Google Scholar 

  71. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363. doi:10.1126/science.1092436

    Google Scholar 

  72. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224. doi:312/5771/217

    Google Scholar 

  73. Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE (2008) Cell tracking with optical imaging. Eur Radiol 18(10):2021–2032. doi:10.1007/s00330-008-0984-z

    Google Scholar 

  74. Sutton EJ, Boddington SE, Nedopil AJ, Henning TD, Demos SG, Baehner R, Sennino B, Lu Y, Daldrup-Link HE (2009) An optical imaging method to monitor stem cell migration in a model of immune-mediated arthritis. Opt Express 17(26):24403–24413. doi:194171

    Google Scholar 

  75. Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462(7273):595–601. doi:10.1038/nature08592

    Google Scholar 

  76. Warlich E, Kuehle J, Cantz T, Brugman MH, Maetzig T, Galla M, Filipczyk AA, Halle S, Klump H, Scholer HR, Baum C, Schroeder T, Schambach A (2011) Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol Ther 19(4):782–789. doi:10.1038/mt.2010.314

    Google Scholar 

  77. Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2(12):920–931. doi:10.1038/nmeth815

    Google Scholar 

  78. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. doi:10.1038/nmeth818

    Google Scholar 

  79. Rice WL, Kaplan DL, Georgakoudi I (2010) Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PLoS ONE 5(4):e10075. doi:10.1371/journal.pone.0010075

    Google Scholar 

  80. Jérôme Artus A-KH (2007) Live imaging genetically-encoded fluorescent proteins in embryonic stem cells using confocal microscopy. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational topics in microscopy. Sloan-Kettering Institute, New York

    Google Scholar 

  81. Malide D, Metais JY, Dunbar CE (2012) Dynamic clonal analysis of murine hematopoietic stem and progenitor cells marked by 5 fluorescent proteins using confocal and multiphoton microscopy. Blood 120(26):e105–e116. doi:blood-2012-06-440636

    Google Scholar 

  82. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614. doi:10.1038/nmeth.1483

    Google Scholar 

  83. Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, Greco V (2012) Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487(7408):496–499. doi:10.1038/nature11218

    Google Scholar 

  84. Takayama N, Eto K (2012) Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application. Cell Mol Life Sci 69(20):3419–3428. doi:10.1007/s00018-012-0995-4

    Google Scholar 

  85. Takayama N, Nishimura S, Nakamura S, Shimizu T, Ohnishi R, Endo H, Yamaguchi T, Otsu M, Nishimura K, Nakanishi M, Sawaguchi A, Nagai R, Takahashi K, Yamanaka S, Nakauchi H, Eto K (2010) Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med 207(13):2817–2830. doi:10.1084/jem.20100844

    Google Scholar 

  86. Rodriguez-Porcel M, Wu JC, Gambhir SS (2008) Molecular imaging of stem cells. Stem Book, Cambridge

    Google Scholar 

  87. Shah K, Jacobs A, Breakefield XO, Weissleder R (2004) Molecular imaging of gene therapy for cancer. Gene Ther 11(15):1175–1187. doi:10.1038/sj.gt.3302278

    Google Scholar 

  88. Nguyen PK, Lan F, Wang Y, Wu JC (2011) Imaging: guiding the clinical translation of cardiac stem cell therapy. Circ Res 109(8):962–979. doi:10.1161/CIRCRESAHA.111.242909

    Google Scholar 

  89. Beeres SL, Bengel FM, Bartunek J, Atsma DE, Hill JM, Vanderheyden M, Penicka M, Schalij MJ, Wijns W, Bax JJ (2007) Role of imaging in cardiac stem cell therapy. J Am Col Cardiol 49(11):1137–1148. doi:10.1016/j.jacc.2006.10.072

    Google Scholar 

  90. Rodriguez-Porcel M (2010) In vivo imaging and monitoring of transplanted stem cells: clinical applications. Curr Cardiol Rep 12(1):51–58. doi:10.1007/s11886-009-0073-1

    Google Scholar 

  91. Chan AT, Abraham MR (2012) SPECT and PET to optimize cardiac stem cell therapy. J Nucl Cardiol 19(1):118–125. doi:10.1007/s12350-011-9485-6

    Google Scholar 

  92. Dimayuga VM, Rodriguez-Porcel M (2011) Molecular imaging of cell therapy for gastroenterologic applications. Pancreatology 11(4):414–427. doi:10.1159/000327395

    Google Scholar 

  93. Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8(11):677–688. doi:10.1038/nrclinonc.2011.141

    Google Scholar 

  94. Manley NC, Steinberg GK (2012) Tracking stem cells for cellular therapy in stroke. Curr Pharm Des 18(25):3685–3693

    Google Scholar 

  95. Sandu N, Schaller B (2010) Stem cell transplantation in brain tumors: a new field for molecular imaging? Mol Med 16(9–10):433–437. doi:10.2119/molmed.2010.00035

    Google Scholar 

  96. Shah P, Choi BG, Mazhari R (2011) Positron emission tomography for the evaluation and treatment of cardiomyopathy. Ann New York Acad Sci 1228:137–149. doi:10.1111/j.1749-6632.2011.06017.x

    Google Scholar 

  97. Wang J, Tian M, Zhang H (2011) PET molecular imaging in stem cell therapy for neurological diseases. Eur J Nucl Med Mol Imaging 38(10):1926–1938. doi:10.1007/s00259-011-1860-7

    Google Scholar 

  98. Wu C, Ma G, Li J, Zheng K, Dang Y, Shi X, Sun Y, Li F, Zhu Z (2013) In vivo cell tracking via (1)(8)F-fluorodeoxyglucose labeling: a review of the preclinical and clinical applications in cell-based diagnosis and therapy. Clin Imaging 37(1):28–36. doi:10.1016/j.clinimag.2012.02.023

    Google Scholar 

  99. Zhou R, Acton PD, Ferrari VA (2006) Imaging stem cells implanted in infarcted myocardium. J Am Col Cardiol 48(10):2094–2106. doi:10.1016/j.jacc.2006.08.026

    Google Scholar 

  100. Bengel FM (2011) Noninvasive stem cell tracking. J Nucl Cardiol 18(5):966–973. doi:10.1007/s12350-011-9436-2

    Google Scholar 

  101. Cao F, Li Z, Lee A, Liu Z, Chen K, Wang H, Cai W, Chen X, Wu JC (2009) Noninvasive de novo imaging of human embryonic stem cell-derived teratoma formation. Cancer Res 69(7):2709–2713. doi:10.1158/0008-5472.CAN-08-4122

    Google Scholar 

  102. Martinez-Quintanilla J, Bhere D, Heidari P, He D, Mahmood U, Shah K (2013) In vivo Imaging of the therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells. doi:10.1002/stem.1355

    Google Scholar 

  103. Rueger MA, Backes H, Walberer M, Neumaier B, Ullrich R, Simard ML, Emig B, Fink GR, Hoehn M, Graf R, Schroeter M (2010) Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci 18:6454–6460. doi:10.1523/JNEUROSCI.6092-09.2010

    Google Scholar 

  104. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336. doi:10.1038/3337

    Google Scholar 

  105. Tarantal AF, Lee CC, Batchelder CA, Christensen JE, Prater D, Cherry SR (2012) Radiolabeling and in vivo imaging of transplanted renal lineages differentiated from human embryonic stem cells in fetal rhesus monkeys. Mol Imaging Biol 14(2):197–204. doi:10.1007/s11307-011-0487-1

    Google Scholar 

  106. Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS (2006) Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 47(8):1295–1301

    Google Scholar 

  107. Lee PH, Kim JW, Bang OY, Ahn YH, Joo IS, Huh K (2008) Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmcol Ther 83(5):723–730. doi:10.1038/sj.clpt.6100386

    Google Scholar 

  108. Marini C, Podesta M, Massollo M, Capitanio S, Fiz F, Morbelli S, Brignone M, Bacigalupo A, Piana M, Frassoni F, Sambuceti G (2012) Intrabone transplant of cord blood stem cells establishes a local engraftment store: a functional PET/FDG study. J Biomed Biotechnol 2012:767369. doi:10.1155/2012/767369

    Google Scholar 

  109. Castellani M, Colombo A, Giordano R, Pusineri E, Canzi C, Longari V, Piccaluga E, Palatresi S, Dellavedova L, Soligo D, Rebulla P, Gerundini P (2010) The role of PET with 13 N-ammonia and 18F-FDG in the assessment of myocardial perfusion and metabolism in patients with recent AMI and intracoronary stem cell injection. J Nucl Med 51(12):1908–1916. doi:10.2967/jnumed.110.078469

    Google Scholar 

  110. Loeb DM, Hobbs RF, Okoli A, Chen AR, Cho S, Srinivasan S, Sgouros G, Shokek O, Wharam MD Jr, Scott T, Schwartz CL (2010) Tandem dosing of samarium-153 ethylenediamine tetramethylene phosphoric acid with stem cell support for patients with high-risk osteosarcoma. Cancer 116(23):5470–5478. doi:10.1002/cncr.25518

    Google Scholar 

  111. Li Z, Wu JC, Sheikh AY, Kraft D, Cao F, **e X, Patel M, Gambhir SS, Robbins RC, Cooke JP (2007) Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116(11 Suppl):I46–I54. doi:10.1161/CIRCULATIONAHA.106.680561

    Google Scholar 

  112. Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11(21):7749–7756. doi:10.1158/1078-0432.CCR-05-0876

    Google Scholar 

  113. Terrovitis J, Kwok KF, Lautamaki R, Engles JM, Barth AS, Kizana E, Miake J, Leppo MK, Fox J, Seidel J, Pomper M, Wahl RL, Tsui B, Bengel F, Marban E, Abraham MR (2008) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Col Cardiol. 52(20):1652–1660. doi:10.1016/j.jacc.2008.06.051

    Google Scholar 

  114. Higuchi T, Anton M, Saraste A, Dumler K, Pelisek J, Nekolla SG, Bengel FM, Schwaiger M (2009) Reporter gene PET for monitoring survival of transplanted endothelial progenitor cells in the rat heart after pretreatment with VEGF and atorvastatin. J Nucl Med 50(11):1881–1886. doi:10.2967/jnumed.109.067801

    Google Scholar 

  115. Yaghoubi SS, Campbell DO, Radu CG, Czernin J (2012) Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics 2(4):374–391. doi:10.7150/thno.3677

    Google Scholar 

  116. Cao F, Lin S, **e X, Ray P, Patel M, Zhang X, Drukker M, Dylla SJ, Connolly AJ, Chen X, Weissman IL, Gambhir SS, Wu JC (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113(7):1005–1014. doi:10.1161/CIRCULATIONAHA.105.588954

    Google Scholar 

  117. Rath P, Shi H, Maruniak JA, Litofsky NS, Maria BL, Kirk MD (2009) Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr Stem Cell Res Ther 4(1):44–49

    Google Scholar 

  118. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, Segars WP, Chen HH, Fritzges D, Izbudak I, Young RG, Marcelino M, Pittenger MF, Solaiyappan M, Boston RC, Tsui BM, Wahl RL, Bulte JW (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112(10):1451–1461. doi:10.1161/CIRCULATIONAHA.105.537480

    Google Scholar 

  119. Blackwood KJ, Lewden B, Wells RG, Sykes J, Stodilka RZ, Wisenberg G, Prato FS (2009) In vivo SPECT quantification of transplanted cell survival after engraftment using (111)In-tropolone in infarcted canine myocardium. J Nucl Med 50(6):927–935. doi:10.2967/jnumed.108.058966

    Google Scholar 

  120. Gu E, Chen WY, Gu J, Burridge P, Wu JC (2012) Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics 2(4):335–345. doi:10.7150/thno.3666

    Google Scholar 

  121. Goussetis E, Manginas A, Koutelou M, Peristeri I, Theodosaki M, Kollaros N, Leontiadis E, Theodorakos A, Paterakis G, Karatasakis G, Cokkinos DV, Graphakos S (2006) Intracoronary infusion of CD133+ and CD133-CD34+ selected autologous bone marrow progenitor cells in patients with chronic ischemic cardiomyopathy: cell isolation, adherence to the infarcted area, and body distribution. Stem Cells 24(10):2279–2283. doi:10.1634/stemcells.2005-0589

    Google Scholar 

  122. Pomper MG, Hammond H, Yu X, Ye Z, Foss CA, Lin DD, Fox JJ, Cheng L (2009) Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Res 19(3):370–379. doi:10.1038/cr.2008.329

    Google Scholar 

  123. Zhou R, Thomas DH, Qiao H, Bal HS, Choi SR, Alavi A, Ferrari VA, Kung HF, Acton PD (2005) In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med 46(5):816–822

    Google Scholar 

  124. Zhou Y, Sun M, Li H, Yan M, He Z, Wang W, Lu S (2013) Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy. Cytotherapy 15(4):467–480. doi:10.1016/j.jcyt.2013.01.007

    Google Scholar 

  125. Mitkari B, Kerkela E, Nystedt J, Korhonen M, Mikkonen V, Huhtala T, Jolkkonen J (2013) Intra-arterial infusion of human bone marrow-derived mesenchymal stem cells results in transient localization in the brain after cerebral ischemia in rats. Exp Neurol 239:158–162. doi:10.1016/j.expneurol.2012.09.018

    Google Scholar 

  126. Bindslev L, Haack-Sorensen M, Bisgaard K, Kragh L, Mortensen S, Hesse B, Kjaer A, Kastrup J (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33(10):1171–1177. doi:10.1007/s00259-006-0093-7

    Google Scholar 

  127. Phulpin B, Dolivet G, Marie PY, Poussier S, Huger S, Bravetti P, Graff P, Merlin JL, Tran N (2011) Feasibility of treating irradiated bone with intramedullary delivered autologous mesenchymal stem cells. J Biomed Biotechnol 2011:560257. doi:10.1155/2011/560257

    Google Scholar 

  128. Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P, Socan A, Schrepfer S, Torre-Amione G, Haddad F, Wu JC (2013) Effects of intracoronary CD34 + stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res 112(1):165–173. doi:CIRCRESAHA.112.276519

    Google Scholar 

  129. Mader EK, Butler G, Dowdy SC, Mariani A, Knutson KL, Federspiel MJ, Russell SJ, Galanis E, Dietz AB, Peng KW (2013) Optimizing patient derived mesenchymal stem cells as virus carriers for a phase I clinical trial in ovarian cancer. J Transl Med 11:20. doi:10.1186/1479-5876-11-20

    Google Scholar 

  130. Chen SL, Fang WW, Qian J, Ye F, Liu YH, Shan SJ, Zhang JJ, Lin S, Liao LM, Zhao RC (2004) Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl) 117(10):1443–1448

    Google Scholar 

  131. Musialek P, Tekieli L, Kostkiewicz M, Majka M, Szot W, Walter Z, Zebzda A, Pieniazek P, Kadzielski A, Banys RP, Olszowska M, Pasowicz M, Zmudka K, Tracz W (2011) Randomized transcoronary delivery of CD34(+) cells with perfusion versus stop-flow method in patients with recent myocardial infarction: Early cardiac retention of (9)(9)(m)Tc-labeled cells activity. J Nucl Cardiol 18(1):104–116. doi:10.1007/s12350-010-9326-z

    Google Scholar 

  132. Perin EC, Silva GV, Zheng Y, Gahremanpour A, Canales J, Patel D, Fernandes MR, Keller LH, Quan X, Coulter SA, Moore WH, Herlihy JP, Willerson JT (2012) Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase-bright stem cells in patients with ischemic heart failure. Am Heart J 163(3):415–421, 421 e411. doi:10.1016/j.ahj.2011.11.020

    Google Scholar 

  133. Tzukerman M, Rosenberg T, Ravel Y, Reiter I, Coleman R, Skorecki K (2003) An experimental platform for studying growth and invasiveness of tumor cells within teratomas derived from human embryonic stem cells. Proc Natl Acad Sci USA 100(23):13507–13512. doi:10.1073/pnas.2235551100

    Google Scholar 

  134. Tao W, Evans BG, Yao J, Cooper S, Cornetta K, Ballas CB, Hangoc G, Broxmeyer HE (2007) Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not. Stem Cells 25(3):670–678. doi:10.1634/stemcells.2006-0553

    Google Scholar 

  135. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Google Scholar 

  136. Lin S, **e X, Patel MR, Yang YH, Li Z, Cao F, Gheysens O, Zhang Y, Gambhir SS, Rao JH, Wu JC (2007) Quantum dot imaging for embryonic stem cells. BMC Biotechnol 7:67. doi:10.1186/1472-6750-7-67

    Google Scholar 

  137. Boddington SE, Henning TD, Jha P, Schlieve CR, Mandrussow L, DeNardo D, Bernstein HS, Ritner C, Golovko D, Lu Y, Zhao S, Daldrup-Link HE (2010) Labeling human embryonic stem cell-derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA-compatible alternative to firefly luciferase. Cell Transplant 19(1):55–65. doi:10.3727/096368909X478579

    Google Scholar 

  138. Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, Kitamura K, Kumagai G, Nishino M, Tomisato S, Higashi H, Nagai T, Katoh H, Kohda K, Matsuzaki Y, Yuzaki M, Ikeda E, Toyama Y, Nakamura M, Yamanaka S, Okano H (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA 107(28):12704–12709. doi:10.1073/pnas.0910106107

    Google Scholar 

  139. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41(3):516–523. doi:10.1161/STROKEAHA.109.573691

    Google Scholar 

  140. Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H, Kohn DB, Nelson MD, Crooks GM (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102(10):3478–3482. doi:10.1182/blood-2003-05-1432

    Google Scholar 

  141. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R (2003) In vivo racking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254. doi:10.1089/104303403767740786

    Google Scholar 

  142. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, Fishbein MC, Gambhir SS (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108(11):1302–1305. doi:10.1161/01.CIR.0000091252.20010.6E

    Google Scholar 

  143. Raikwar SP, Zavazava N (2012) PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice. Transplant Res 1(1):19. doi:10.1186/2047-1440-1-19

    Google Scholar 

  144. Cao F, van der Bogt KE, Sadrzadeh A, **e X, Sheikh AY, Wang H, Connolly AJ, Robbins RC, Wu JC (2007) Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells Dev 16(6):883–891. doi:10.1089/scd 2007.0160

    Google Scholar 

  145. Priddle H, Grabowska A, Morris T, Clarke PA, McKenzie AJ, Sottile V, Denning C, Young L, Watson S (2009) Bioluminescence imaging of human embryonic stem cells transplanted in vivo in murine and chick models. Cloning Stem Cells 11(2):259–267. doi:10.1089/clo 2008.0056

    Google Scholar 

  146. Tian X, Hexum MK, Penchev VR, Taylor RJ, Shultz LD, Kaufman DS (2009) Bioluminescent imaging demonstrates that transplanted human embryonic stem cell-derived CD34(+) cells preferentially develop into endothelial cells. Stem Cells 27(11):2675–2685. doi:10.1002/stem.204

    Google Scholar 

  147. Jung-Joon Min UCNL, Han Ho Jae, Lee Hyun-Suk, Moon Sung-Min, Heo Jung-Sun, Lee Yun Jung, Ahn Kyuyoun, Park Kwangsung (2008) Visualization of embryonic stem cell survival in vivo by adenoviral-driven bioluminescence reporter in rat corpus cavernosum. Tissue Eng Regen Med 5(4):743–749

    Google Scholar 

  148. Sher F, van Dam G, Boddeke E, Copray S (2009) Bioluminescence imaging of Olig2-neural stem cells reveals improved engraftment in a demyelination mouse model. Stem Cells 27(7):1582–1591. doi:10.1002/stem.76

    Google Scholar 

  149. Ling X, Marini F, Konopleva M, Schober W, Shi Y, Burks J, Clise-Dwyer K, Wang RY, Zhang W, Yuan X, Lu H, Caldwell L, Andreeff M (2010) Mesenchymal stem cells overexpressing IFN-beta inhibit breast cancer growth and metastases through Stat3 signaling in a syngeneic tumor model. Cancer Microenviron 3(1):83–95. doi:10.1007/s12307-010-0041-8

    Google Scholar 

  150. Deuse T, Peter C, Fedak PW, Doyle T, Reichenspurner H, Zimmermann WH, Eschenhagen T, Stein W, Wu JC, Robbins RC, Schrepfer S (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120(11 Suppl):S247–S254. doi:10.1161/CIRCULATIONAHA.108.843680

    Google Scholar 

  151. Togel F, Yang Y, Zhang P, Hu Z, Westenfelder C (2008) Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury. Am J Physiol Renal Physiol 295(1):F315–F321. doi:10.1152/ajprenal.0 0098.2008

    Google Scholar 

  152. Zachos T, Diggs A, Weisbrode S, Bartlett J, Bertone A (2007) Mesenchymal stem cell-mediated gene delivery of bone morphogenetic protein-2 in an articular fracture model. Mol Ther 15(8):1543–1550. doi:10.1038/sj.mt.6300192

    Google Scholar 

  153. Gao J, Li Y, Lu S, Wang M, Yang Z, Yan X, Zheng Y (2009) Enhanced in vivo motility of human umbilical cord blood hematopoietic stem/progenitor cells introduced via intra-bone marrow injection into xenotransplanted NOD/SCID mouse. Exp Hematol 37(8):990–997. doi:10.1016/j.exphem.2009.05.006

    Google Scholar 

  154. Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, Bogler O, Andreeff M, Lang FF (2009) Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 69(23):8932–8940. doi:10.1158/0008-5472.CAN-08-3873

    Google Scholar 

  155. Wang H, Cao F, De A, Cao Y, Contag C, Gambhir SS, Wu JC, Chen X (2009) Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 27(7):1548–1558. doi:10.1002/stem.81

    Google Scholar 

  156. Pearl JI, Lee AS, Leveson-Gower DB, Sun N, Ghosh Z, Lan F, Ransohoff J, Negrin RS, Davis MM, Wu JC (2011) Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 8(3):309–317. doi:10.1016/j.stem.2011.01.012

    Google Scholar 

  157. Boheler KR, Joodi RN, Qiao H, Juhasz O, Urick AL, Chuppa SL, Gundry RL, Wersto RP, Zhou R (2011) Embryonic stem cell-derived cardiomyocyte heterogeneity and the isolation of immature and committed cells for cardiac remodeling and regeneration. Stem Cells Int 2011:214203. doi:10.4061/2011/214203

    Google Scholar 

  158. Lee AS, Xu D, Plews JR, Nguyen PK, Nag D, Lyons JK, Han L, Hu S, Lan F, Liu J, Huang M, Narsinh KH, Long CT, de Almeida PE, Levi B, Kooreman N, Bangs C, Pacharinsak C, Ikeno F, Yeung AC, Gambhir SS, Robbins RC, Longaker MT, Wu JC (2011) Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J Biol Chem 286(37):32697–32704. doi:10.1074/jbc.M111.235739

    Google Scholar 

  159. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2):213–223. doi:10.1161/CIRCULATIONAHA.112.131110

    Google Scholar 

  160. Liu J, Cheng EC, Long RC, Yang SH, Wang L, Cheng PH, Yang J, Wu D, Mao H, Chan AW (2009) Noninvasive monitoring of embryonic stem cells in vivo with MRI transgene reporter. Tissue Eng Part C Methods 15(4):739–747. doi:10.1089/ten.TEC2008.0678

    Google Scholar 

  161. Burgess A, Ayala-Grosso CA, Ganguly M, Jordao JF, Aubert I, Hynynen K (2011) Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS ONE 6(11):e27877. doi:10.1371/journal.pone.0027877

    Google Scholar 

  162. Qiu B, Yang X (2008) Molecular MRI of hematopoietic stem-progenitor cells: in vivo monitoring of gene therapy and atherosclerosis. Nat Clin Pract Cardiovas Med 5(7):396–404. doi:10.1038/ncpcardio1217

    Google Scholar 

  163. Chung J, Yamada M, Yang PC (2009) Magnetic resonance imaging of human embryonic stem cells. Curr Protoc Stem Cell Biol. Chapter 5 (Unit 5A):3. doi:10.1002/9780470151808.sc05a03s10

  164. Himes N, Min JY, Lee R, Brown C, Shea J, Huang X, **ao YF, Morgan JP, Burstein D, Oettgen P (2004) In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn Res Med 52(5):1214–1219. doi:10.1002/mrm.20220

    Google Scholar 

  165. Daadi MM, Li Z, Arac A, Grueter BA, Sofilos M, Malenka RC, Wu JC, Steinberg GK (2009) Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 17(7):1282–1291. doi:10.1038/mt.2009.104

    Google Scholar 

  166. Shen J, Zhong XM, Duan XH, Cheng LN, Hong GB, Bi XB, Liu Y (2009) Magnetic resonance imaging of mesenchymal stem cells labeled with dual (MR and fluorescence) agents in rat spinal cord injury. Acad Radiol 16(9):1142–1154. doi:10.1016/j.acra.2009.03.016

    Google Scholar 

  167. Sykova E, Jendelova P (2006) Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener Dis 3(1–2):62–67. doi:10.1159/000092095

    Google Scholar 

  168. Campan M, Lionetti V, Aquaro GD, Forini F, Matteucci M, Vannucci L, Chiuppesi F, Di Cristofano C, Faggioni M, Maioli M, Barile L, Messina E, Lombardi M, Pucci A, Pistello M, Recchia FA (2011) Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. Am J Physiol Heart Circ Physiol 300(6):H2238–H2250. doi:10.1152/ajpheart.0 0935.2010

    Google Scholar 

  169. Amado LC, Saliaris AP, Schuleri KH, St John M, **e JS, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman AW, Hare JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102(32):11474–11479. doi:10.1073/pnas.0504388102

    Google Scholar 

  170. Wood JA, Chung DJ, Park SA, Zwingenberger AL, Reilly CM, Ly I, Walker NJ, Vernau W, Hayashi K, Wisner ER, Cannon MS, Kass PH, Cherry SR, Borjesson DL, Russell P, Murphy CJ (2012) Periocular and intra-articular injection of canine adipose-derived mesenchymal stem cells: an in vivo imaging and migration study. J Ocul Pharmacol Ther 28(3):307–317. doi:10.1089/jop2011.0166

    Google Scholar 

  171. Lu SS, Liu S, Zu QQ, Xu XQ, Yu J, Wang JW, Zhang Y, Shi HB (2013) In vivo MR imaging of intraarterially delivered magnetically labeled mesenchymal stem cells in a canine stroke model. PLoS ONE 8(2):e54963. doi:10.1371/journal.pone.0054963

    Google Scholar 

  172. Meng Y, Zhang F, Blair T, Gu H, Feng H, Wang J, Yuan C, Zhang Z, Qiu B, Yang X (2012) MRI of auto-transplantation of bone marrow-derived stem-progenitor cells for potential repair of injured arteries. PLoS ONE 7(2):e31137. doi:10.1371/journal.pone.0031137

    Google Scholar 

  173. Watts AE, Yeager AE, Kopyov OV, Nixon AJ (2011) Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model. Stem Cell Res Ther 2(1):4. doi:10.1186/scrt45

    Google Scholar 

  174. Leng X, Wang J, Fu H, Fisher A, Chen X, Villanueva FS (2009) In-vivo stem cell tracking using ultrasound imaging. Circulation 120(Suppl 18):S326

    Google Scholar 

  175. Arpornmaeklong P, Wang Z, Pressler MJ, Brown SE, Krebsbach PH (2010) Expansion and characterization of human embryonic stem cell-derived osteoblast-like cells. Cell Reprogram 12(4):377–389. doi:10.1089/cell.2009.0079

    Google Scholar 

  176. Nienhuis AW, Persons DA (2012) Development of gene therapy for thalassemia. Cold Spring Harb Perspect Med 2(11). doi:2/11/a011833

  177. Siqueira RC (2011) Stem-cell therapy for retinal diseases In: Kallos PMS (ed) Embryonic stem cells—differentiation and pluripotent alternatives. InTech, p 506

    Google Scholar 

  178. Dunnett SB, Bjorklund A (1987) Mechanisms of function of neural grafts in the adult mammalian brain. J Exp Biol 132:265–289

    Google Scholar 

  179. Drucker-Colin R, Verdugo-Diaz L (2004) Cell transplantation for Parkinson’s disease: present status. Cell Mol Neurobiol 24(3):301–316

    Google Scholar 

  180. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New Engl J Med 344(10):710–719. doi:10.1056/NEJM200103083441002

    Google Scholar 

  181. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155(2):62–70. doi:S1931-5244(09)00220-5

    Google Scholar 

  182. Davies T, Amy Greenwood P, Opitz S, Girard L (2008) Stem cell science: overviews of selected disease areas stem cells and neurodegenerative disease

    Google Scholar 

  183. Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, Baudic S, Ribeiro MJ, Bourdet C, Remy P, Cesaro P, Hantraye P, Peschanski M (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 5 (4):303–309. doi:S1474-4422(06)70381-7[pii] 10.1016/S1474-4422(06)70381-7

    Google Scholar 

  184. Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, Brugieres P, Mangin JF, Boisse MF, Palfi S, Cesaro P, Samson Y, Hantraye P, Peschanski M, Remy P (2004) Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain. 127(Pt 1):65–72. doi:10.1093/brain/awh003

    Google Scholar 

  185. Mazzini L, Fagioli F, Boccaletti R (2004) Stem-cell therapy in amyotrophic lateral sclerosis. Lancet 364(9449):1936–1937. doi:S0140673604174709

    Google Scholar 

  186. Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, Pastore I, Marasso R, Madon E (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4(3):158–161. doi:WEYT8N4CMFY5MVM6

    Google Scholar 

  187. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223(1):229–237. doi:S0014-4886(09)00317-3

    Google Scholar 

  188. Trounson A, Thakar RG, Lomax G, Gibbons D (2011) Clinical trials for stem cell therapies. BMC Med. 9:52. doi:1741-7015-9-52

    Google Scholar 

  189. Acharya VN (2012) Stem cell therapy for kidney disease—present and future. J Assoc Physicians India 60:32–33

    Google Scholar 

  190. Trivedi HL, Vanikar AV, Vakil JM, Shah VR, Modi PR, Trivedi VB (2004) A strategy to achieve donor-specific hyporesponsiveness in cadaver renal allograft recipients by donor haematopoietic stem cell transplantation into the thymus and periphery. Nephrol Dial Transplant 19(9):2374–2377. doi:10.1093/ndt/gfh27419/9/2374

    Google Scholar 

  191. Thrasher AJ, Hacein-Bey-Abina S, Gaspar HB, Blanche S, Davies EG, Parsley K, Gilmour K, King D, Howe S, Sinclair J, Hue C, Carlier F, von Kalle C, de Saint Basile G, le Deist F, Fischer A, Cavazzana-Calvo M (2005) Failure of SCID-X1 gene therapy in older patients. Blood 105(11):4255–4257. doi:2004-12-4837

    Google Scholar 

  192. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Adams S, Howe SJ, Al Ghonaium A, Bayford J, Brown L, Davies EG, Kinnon C, Thrasher AJ (2011) Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 3(97):97ra79. doi:3/97/97ra79

  193. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. New Engl J Med 346(16):1185–1193. doi:10.1056/NEJMoa012616346/16/1185

    Google Scholar 

  194. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P (2010) Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467(7313):318–322. doi:nature09328

    Google Scholar 

  195. Riviere I, Dunbar CE, Sadelain M (2012) Hematopoietic stem cell engineering at a crossroads. Blood 119(5):1107–1116. doi:blood-2011-09-349993

    Google Scholar 

  196. Lehmann R, Pavlicek V, Spinas GA, Weber M (2005) Islet transplantation in type I diabetes mellitus. Ther Umsch 62(7):481–486

    Google Scholar 

  197. Gu W, Hu J, Wang W, Li L, Tang W, Sun S, Cui W, Ye L, Zhang Y, Hong J, Zhu D, Ning G (2012) Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care 35(7):1413–1419. doi:dc11-2161

    Google Scholar 

  198. Haller MJ, Wasserfall CH, McGrail KM, Cintron M, Brusko TM, Wingard JR, Kelly SS, Shuster JJ, Atkinson MA, Schatz DA (2009) Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care 32(11):2041–2046. doi:dc09-0967

    Google Scholar 

  199. Miki T (2011) Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther 2(3):25. doi:scrt66

    MathSciNet  Google Scholar 

  200. Hou Y, Huang Q, Liu T, Guo L (2008) Human amnion epithelial cells can be induced to differentiate into functional insulin-producing cells. Acta Biochim Biophys Sin (Shanghai) 40(9):830–839

    Google Scholar 

  201. Rancea M, Skoetz N, Monsef I, Hubel K, Engert A, Bauer K (2012) Fourteenth biannual report of the Cochrane haematological malignancies group–focus on autologous stem cell transplantation in hematological malignancies. J Natl Cancer Inst 104(14):NP. doi:djs278

  202. Michallet M, Dreger P, Sutton L, Brand R, Richards S, van Os M, Sobh M, Choquet S, Corront B, Dearden C, Gratwohl A, Herr W, Catovsky D, Hallek M, de Witte T, Niederwieser D, Leporrier M, Milligan D (2011) Autologous hematopoietic stem cell transplantation in chronic lymphocytic leukemia: results of European intergroup randomized trial comparing autografting versus observation. Blood 117(5):1516–1521. doi:blood-2010-09-308775

    Google Scholar 

  203. Sutton L, Chevret S, Tournilhac O, Divine M, Leblond V, Corront B, Lepretre S, Eghbali H, Van Den Neste E, Michallet M, Maloisel F, Bouabdallah K, Decaudin D, Berthou C, Brice P, Gonzalez H, Chapiro E, Radford-Weiss I, Leporrier N, Maloum K, Nguyen-Khac F, Davi F, Lejeune J, Merle-Beral H, Leporrier M (2011) Autologous stem cell transplantation as a first-line treatment strategy for chronic lymphocytic leukemia: a multicenter, randomized, controlled trial from the SFGM-TC and GFLLC. Blood 117(23):6109–6119. doi:blood-2010-11-317073

    Google Scholar 

  204. Socie G, Schmoor C, Bethge WA, Ottinger HD, Stelljes M, Zander AR, Volin L, Ruutu T, Heim DA, Schwerdtfeger R, Kolbe K, Mayer J, Maertens JA, Linkesch W, Holler E, Koza V, Bornhauser M, Einsele H, Kolb HJ, Bertz H, Egger M, Grishina O, Finke J (2011) Chronic graft-versus-host disease: long-term results from a randomized trial on graft-versus-host disease prophylaxis with or without anti-T-cell globulin ATG-Fresenius. Blood 117(23):6375–6382. doi:blood-2011-01-329821

    Google Scholar 

  205. George RE, Li S, Medeiros-Nancarrow C, Neuberg D, Marcus K, Shamberger RC, Pulsipher M, Grupp SA, Diller L (2006) High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol 24(18):2891–2896. doi:24/18/2891

    Google Scholar 

  206. Berthold F, Boos J, Burdach S, Erttmann R, Henze G, Hermann J, Klingebiel T, Kremens B, Schilling FH, Schrappe M, Simon T, Hero B (2005) Myeloablative megatherapy with autologous stem-cell rescue versus oral maintenance chemotherapy as consolidation treatment in patients with high-risk neuroblastoma: a randomised controlled trial. Lancet Oncol 6(9):649–658. doi:S1470-2045(05)70291-6

    Google Scholar 

  207. Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol. 7(4):204–215. doi:nrcardio.2010.1

    Google Scholar 

  208. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148. doi:10.1016/S0140-6736(04)16626-9S0140673604166269

    Google Scholar 

  209. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, Maertens J, Rademakers F, Dymarkowski S, Gheysens O, Van Cleemput J, Bormans G, Nuyts J, Belmans A, Mortelmans L, Boogaerts M, Van de Werf F (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121. doi:S0140-6736(05)67861-0

    Google Scholar 

  210. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New Engl J Med 355(12):1210–1221. doi:355/12/1210

    Google Scholar 

  211. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grogaard HK, Bjornerheim R, Brekke M, Muller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New Engl J Med 355(12):1199–1209. doi:355/12/1199

    Google Scholar 

  212. Huikuri HV, Kervinen K, Niemela M, Ylitalo K, Saily M, Koistinen P, Savolainen ER, Ukkonen H, Pietila M, Airaksinen JK, Knuuti J, Makikallio TH (2008) Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J 29(22):2723–2732. doi:ehn436

    Google Scholar 

  213. Tendera M, Wojakowski W, Ruzyllo W, Chojnowska L, Kepka C, Tracz W, Musialek P, Piwowarska W, Nessler J, Buszman P, Grajek S, Breborowicz P, Majka M, Ratajczak MZ (2009) Intracoronary infusion of bone marrow-derived selected CD34+ CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. Eur Heart J 30(11):1313–1321. doi:ehp073

    Google Scholar 

  214. van der Laan A, Hirsch A, Nijveldt R, van der Vleuten PA, van der Giessen WJ, Doevendans PA, Waltenberger J, Ten Berg JM, Aengevaeren WR, Zwaginga JJ, Biemond BJ, van Rossum AC, Tijssen JG, Zijlstra F, Piek JJ (2008) Bone marrow cell therapy after acute myocardial infarction: the HEBE trial in perspective, first results. Neth Heart J 16(12):436–439

    Google Scholar 

  215. Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin M, Poh KK, Weinstein R, Kearney M, Chaudhry M, Burg A, Eaton L, Heyd L, Thorne T, Shturman L, Hoffmeister P, Story K, Zak V, Dowling D, Traverse JH, Olson RE, Flanagan J, Sodano D, Murayama T, Kawamoto A, Kusano KF, Wollins J, Welt F, Shah P, Soukas P, Asahara T, Henry TD (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115(25):3165–3172. doi:CIRCULATIONAHA.106.687376

    Google Scholar 

  216. Jonas JB, Witzens-Harig M, Arseniev L, Ho AD (2010) Intravitreal autologous bone-marrow-derived mononuclear cell transplantation. Acta Ophthalmol 88(4):e131–e132. doi:AOS1564

    Google Scholar 

  217. Jonas JB, Witzens-Harig M, Arseniev L, Ho AD (2008) Intravitreal autologous bone marrow-derived mononuclear cell transplantation: a feasibility report. Acta Ophthalmol 86(2):225–226. doi:AOS987

    Google Scholar 

  218. Yong Zhao M, PhD phase 1/phase 2 study of stem cell educator therapy in alopecia areata

    Google Scholar 

  219. Lataillade JJ, Doucet C, Bey E, Carsin H, Huet C, Clairand I, Bottollier-Depois JF, Chapel A, Ernou I, Gourven M, Boutin L, Hayden A, Carcamo C, Buglova E, Joussemet M, de Revel T, Gourmelon P (2007) New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regen Med 2(5):785–794. doi:10.2217/17460751.2.5.785

    Google Scholar 

  220. Heile A, Brinker T (2011) Clinical translation of stem cell therapy in traumatic brain injury: the potential of encapsulated mesenchymal cell biodelivery of glucagon-like peptide-1. Dialogues Clin Neurosci 13(3):279–286

    Google Scholar 

  221. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955. doi:10.1089/ten 2006.0271

    Google Scholar 

  222. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313. doi:10.1038/6529

    Google Scholar 

  223. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97(5):1227–1231

    Google Scholar 

  224. Gordon MY, Levicar N, Pai M, Bachellier P, Dimarakis I, Al-Allaf F, M’Hamdi H, Thalji T, Welsh JP, Marley SB, Davies J, Dazzi F, Marelli-Berg F, Tait P, Playford R, Jiao L, Jensen S, Nicholls JP, Ayav A, Nohandani M, Farzaneh F, Gaken J, Dodge R, Alison M, Apperley JF, Lechler R, Habib NA (2006) Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells 24(7):1822–1830. doi:2005-0629

    Google Scholar 

  225. Levicar N, Pai M, Habib NA, Tait P, Jiao LR, Marley SB, Davis J, Dazzi F, Smadja C, Jensen SL, Nicholls JP, Apperley JF, Gordon MY (2008) Long-term clinical results of autologous infusion of mobilized adult bone marrow derived CD34+ cells in patients with chronic liver disease. Cell Prolif 41(Suppl 1):115–125. doi:CPR491

    Google Scholar 

  226. Terai S, Ishikawa T, Omori K, Aoyama K, Marumoto Y, Urata Y, Yokoyama Y, Uchida K, Yamasaki T, Fujii Y, Okita K, Sakaida I (2006) Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 24(10):2292–2298. doi:2005-0542

    Google Scholar 

  227. Lyra AC, Soares MB, da Silva LF, Fortes MF, Silva AG, Mota AC, Oliveira SA, Braga EL, de Carvalho WA, Genser B, dos Santos RR, Lyra LG (2007) Feasibility and safety of autologous bone marrow mononuclear cell transplantation in patients with advanced chronic liver disease. World J Gastroenterol 13(7):1067–1073

    Google Scholar 

  228. Gasbarrini A, Rapaccini GL, Rutella S, Zocco MA, Tittoto P, Leone G, Pola P, Gasbarrini G, Di Campli C (2007) Rescue therapy by portal infusion of autologous stem cells in a case of drug-induced hepatitis. Dig Liver Dis 39(9):878–882. doi:S1590-8658(06)00312-4

    Google Scholar 

  229. Pai M, Spalding D, ** F, Habib N (2012) Autologous bone marrow stem cells in the treatment of chronic liver disease. Int J Hepatol 2012:307165. doi:10.1155/2012/307165

    Google Scholar 

  230. Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J, Chen L, Lv S, Li Y, Yu S, Geng H, ** L, Lau GK, Wang FS (2012) Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 27(Suppl 2):112–120. doi:10.1111/j.1440-1746.2011.07024.x

    Google Scholar 

  231. Kharaziha P, Hellstrom PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F, Telkabadi M, Atashi A, Honardoost M, Zali MR, Soleimani M (2009) Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol 21(10):1199–1205. doi:10.1097/MEG.0b013e32832a1f6c

    Google Scholar 

  232. Persidis A (1999) Tissue engineering. Nat Biotechnol 17(5):508–510. doi:10.1038/8700

    Google Scholar 

  233. McKernan R, McNeish J, Smith D (2010) Pharma’s develo** interest in stem cells. Cell Stem Cell 6(6):517–520. doi:S1934-5909(10)00222-5

    Google Scholar 

  234. Kim HJ, ** CY (2012) Stem cells in drug screening for neurodegenerative disease. Korean J Physiol Pharmacol 16(1):1–9. doi:10.4196/kjpp.2012.16.1.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritha Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Singh, R.K., Gaikwad, S.M., Chatterjee, S., Ray, P. (2014). Stem Cells: The Holy Grail of Regenerative Medicine. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation