Marine Corrosion and Biodeterioration

  • Chapter
Materials in Marine Technology

Abstract

Corrosion is probably the best known of the deterioration mechanisms which can affect materials in the marine environment and much attention is rightly paid to its avoidance. Strictly, corrosion is a phenomenon which only affects metals, but there are a variety of ‘weathering’ and other environmental deterioration phenomena which can affect plastics and other non-metallic materials, and these are also dealt with in this chapter. Deterioration due to the effects (direct or indirect) of living organisms are also discussed, although quantitative data in this area are somewhat limited. Despite the fact that it is not strictly a deterioration phenomenon, marine fouling is also included in this latter category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore WJ. Physical chemistry. Longmans, London, 1972

    Google Scholar 

  2. Bard A, Parsons R, Jordan, J (eds). Standard potentials in aqueous solution. Marcel Dekker, New York, 1985

    Google Scholar 

  3. Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. NACE/CEBELCOR, Houston, 1974

    Google Scholar 

  4. Pourbaix A, Marquez-Jacome M. The enhancement of reac-tion kinetics by bacteria. In: Proceedings, 1st European Federation of Corrosion Workshop on Microbial Corrosion, Sintra, Portugal, 1988. Elsevier, London, 1988, pp 29–39

    Google Scholar 

  5. Fontana MG, Greene ND. Corrosion engineering. McGraw- Hill, New York, 1982

    Google Scholar 

  6. Bockris JO’M, Reddy AKN. Modern electrochemistry. Macdonald, London, 1970

    Google Scholar 

  7. LaQue FL. Marine corrosion — causes and prevention. Wiley, New York, 1975

    Google Scholar 

  8. Schumacher M (ed.). Seawater corrosion handbook. Noyes Data Corporation, Park Ridge, New Jersey, 1979

    Google Scholar 

  9. Oldfield JW. Electrochemical theory of galvanic corrosion. In: Hack HP (ed.) Galvanic corrosion, ASTP STP 978. ASTM, Philadelphia, 1988, pp 5–22

    Chapter  Google Scholar 

  10. Munn RS. Materials performance. A mathematical model for a galvanic anode cathodic protection system. 1982: 21 (8): 29–32

    Google Scholar 

  11. Astley DG, Rowlands JC. Modelling of bimetallic corrosion in sea water systems. British Corrosion Journal 1985: 20 (2), 90–93

    Google Scholar 

  12. BS PD6484: Commentary on corrosion at bimetallic contacts and its alleviation. BSI, London, 1979

    Google Scholar 

  13. Fangteng, S. The influence of flow velocity on differential aeration corrosion of mild steel in seawater. In: Proceedings, International Conference on Corrosion Control for Offshore and Marine Construction, **amen, 1988. International Academic Publishers/Pergamon, Oxford, 1989, pp 80–85

    Google Scholar 

  14. Wilkins NJM, Lawrence PF. Fundamental mechanisms of corrosion of steel reinforcements in concrete immersed in seawater. In: Concrete in the oceans, Technical Report, CIRIA/UEG. Cement and Concrete Research Association and the Department of Energy, London, 1980

    Google Scholar 

  15. Browne RD, Domone PLJ. The long-term performance of concrete in the marine environment. In: Proceedings, Conference on Offshore Structures, London, 1974. Institute of Civil Engineers, London, 1975, pp 49–59

    Google Scholar 

  16. Powers TC, Copeland LE, Hayes JC, Mann HM. Permeability of Portland cement paste. Journal of the American Concrete Institute 1954; 51 (11): 285–298

    Google Scholar 

  17. Gjorv OE, Vennesland O, El-Busaidy AHS. Diffusion of dis-solved oxygen through concrete. In: Proceedings, International Forum — Corrosion/76. NACE, Houston, 1976, pp 17/1–17/13

    Google Scholar 

  18. Hatch JE (ed.). Aluminium — properties and physical metallurgy. ASM, Metals Park, Ohio, 1984

    Google Scholar 

  19. Rothwell N, Turner MED. Corrosion problems associated with weldments. Materials Performance 1990: 29 (2): 55–58

    Google Scholar 

  20. Wilhelm SM. Galvanic corrosion caused by corrosion prod-ucts. In: Hack HP (ed.) Galvanic corrosion, ASTP STP 978. ASTM, Philadelphia, 1988, pp 23–34

    Chapter  Google Scholar 

  21. Engel L, Klingele H. An atlas of metal damage. Wolfe Science Books and Carl Hanser Verlag, Munich, 1981

    Google Scholar 

  22. Staehle RW. Predictions and experimental verification of the slip dissolution model for stress corrosion cracking of low strength alloys. In: Proceedings, Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys. NACE, Creusot-Loire and Advanced Research Projects Agency, Unieux-Firminy 1973. NACE. Houston, 1977, pp 180–207

    Google Scholar 

  23. Brown BF. The application of fracture mechanics to stress corrosion cracking. Metallurgical Reviews 1968; 129: 171–183

    Google Scholar 

  24. Knott JF. Fundamentals of fracture mechanics. Butterworths, London, 1973

    Google Scholar 

  25. Opoku J, Clark WG. The effects of various hydrogen bearing environments on the SCC of AISI Type 4340 and 3.5c/c NiCrMoV steels. Corrosion-NACE 1980; 36 (5): 251–258

    Google Scholar 

  26. Jones DA. Localised corrosion. In: Parkins RN (ed). Corrosion processes. Applied Science Publishers. London. 1982, pp 161–208

    Google Scholar 

  27. Jaske CE, Payer JH, Balint VS. Corrosion fatigue of metals in marine environments. Springer-Verlag and Battelle Press. Metals Park. Ohio. 1981

    Google Scholar 

  28. Nishoka K, Hirakawa K. Kitawa I. Low frequency corrosion fatigue strength of steel plate. Sumimoto Search 1976; (16): 40–54

    Google Scholar 

  29. UEG. design of tubular joints for offshore structures. UEG Publication UR33. UEG/CIRIA, London, 1985

    Google Scholar 

  30. Hooper WC. Hartt WH. Influence of cathodic polarisation upon fatigue of notched structural steel. In: Proceedings, Conference Corrosion ′77. San Francisco. NACE, Houston. 1977

    Google Scholar 

  31. Congleton J. Hussein I and Parkins RN. Effect of applied potential on corrosion fatigue of wire ropes in seawater. British Corrosion Journal 1985: 20 (1): 15–18

    Google Scholar 

  32. Congleton J. Craig IH. Corrosion fatigue. In: Parkins RN (ed) Corrosion processes. Applied Science Publishers. London. 1982. pp 209–270

    Google Scholar 

  33. Mills NJ. Plastics — microstructure. properties and applications. Edward Arnold. London. 1986

    Google Scholar 

  34. Allen RC. Bauer RS. Moisture-related failure. In: Engineered materials, vol. 2: Engineering plastics. ASM International. Metals Park. Ohio. 1988. pp 761–769

    Google Scholar 

  35. Comyn J. Interaction of water with epoxy resins. In: Proceedings, Second International Conference Polymers in a Marine Environment. Marine Management ( Holdings) Ltd. London. 1989. pp 153–160

    Google Scholar 

  36. Crawford RJ. Plastics engineering. Pergamon. Oxford. 1987

    Google Scholar 

  37. Lavers GM. The strength properties of timbers. In: The strength properties of timber. MTP Construction. Princes Risborough. 1974. pp 1–66

    Google Scholar 

  38. Illston JM. Dinwoodie JM. Smith AA. Concrete, timber and metals. Van Nostrand Reinhold. New York. 1979

    Google Scholar 

  39. Fookes PG. Simm JD. Barr JM. Marine concrete performance in different climatic conditions. In: Proceedings. Conference on Concrete in the Marine Environment. Concrete Society. London. 1986. pp 115–130

    Google Scholar 

  40. Griffin RB. Marine corrosion - marine atmospheres. In: Metals handbook, vol. 13: Corrosion. ASM. Metals Park. Ohio. 1987. pp 902–905

    Google Scholar 

  41. Brown PW. Masters LW. Factors affecting the corrosion of metals in the atmosphere. In: Ailor. WH (ed.) Atmospheric corrosion. Wiley. New York. 1982. pp 31–50

    Google Scholar 

  42. Sereda PJ. Croll SG and Slade HF. Measurement of the time- of-wetness by moisture sensors and their calibration. In: Dean SW. Rhea EC (eds) Atmospheric corrosion of metals. ASTM STP 767. American Society for Testing and Materials. Philadelphia. 1982. pp 267–285

    Google Scholar 

  43. Delre LC and Miller RW. Characterisation of weather aging and radiation susceptibility. In: Engineered materials, vol. 2: Engineering plastics. ASM International. Metals Park. Ohio. 1988. pp 575–580

    Google Scholar 

  44. Ostroff AG. Introduction to oilfield water technology. NACE. Houston. 1979

    Google Scholar 

  45. Beccaria AM. Poggi G. Effect of some surface treatments on kinetics of aluminium corrosion in NaCl solutions at various hydrostatic pressures. British Corrosion Journal 1987: 21 (1): 19–22

    Google Scholar 

  46. Oldfield JW. Todd B. Corrosion of metals in deaerated sea-water. Desalination 1979: 31: 365–83

    Article  Google Scholar 

  47. Goodman PD. Effect of chlorination on materials for sea water cooling systems — a review of chemical reactions. British Corrosion Journal 1987: 22 (1): 56–62

    Google Scholar 

  48. Amann H. Oebius HV. Gehbauer F. Schwarz W. Weber. R. Soft ocean mining. In: Proceedings. 23rd Offshore Technology Conference. Houston. Texas, paper no. OTC 6553. 199Lpp 469–480

    Google Scholar 

  49. Fischer KP, Bue, B. Corrosion and corrosivity of steel in Norwegian marine sediments. In: Escalante E (ed.) Underground corrosion, ASTM STP 741. ASTM, Philadelphia, 1981, pp 24–32

    Chapter  Google Scholar 

  50. King, RA. Prediction of corrosiveness of sea-bed sediments. In: Proceedings Symposium Marine Corrosion on Offshore Structures. Society of Chemical Industry, London, 1979, pp 23–32

    Google Scholar 

  51. Tonyali K. Organic chemical related failure. In: Engineered materials, vol. 2: Engineering plastics. ASM International, Metals Park, Ohio, 1988, pp 770–775

    Google Scholar 

  52. Dexter SC. Marine corrosion — seawater. In: Metals hand-book, vol. 13: Corrosion. ASM, Metals Park, Ohio, 1987, pp 893–901

    Google Scholar 

  53. Eriksrud E, C T. Effect of flow on C02 corrosion rates in real and synthetic formation water. In: Proceedings, Conference Corrosion ′83. NACE, Houston, 1983, pp 44/1–44/40

    Google Scholar 

  54. deWaard C, Milliams DE. Prediction of carbonic acid corrosion in natural gas pipelines. In: Proceedings, 1st International Conference on Internal and External Protection of Pipes. British Hydraulics Research Association, Cranfield, 1975, Fl -1—Fl -7

    Google Scholar 

  55. Tiller AK. Electrochemical aspects of microbial corrosion - an overview. In: Proceedings, Conference on Microbial Corrosion. Metals Society, London, 1983, pp 54–65

    Google Scholar 

  56. King RA, Miller JDA. Corrosion of ferrous metals by bacterially produced iron sulphide and its control by cathodic protection. In: Proceedings, 1st International Conference on Internal and External Protection of Pipes. British Hydraulics Research Association, Cranfield, 1975, pp F2–9–F2–16

    Google Scholar 

  57. International critical tables, vol. 3. McGraw-Hill, New York, 1928

    Google Scholar 

  58. Wilkinson TG. Biological mechanisms leading to potential corrosion problems. In: Lewis JR, Mercer AD (eds.) Corrosion and marine growth on offshore structures. Ellis Horwood, Chichester, 1984, pp 31–37

    Google Scholar 

  59. Gooch TG. Cathodic protection and steel properties. In: Lewis JR. Mercer AD (eds.) Corrosion and marine growth on offshore structures. Ellis Horwood, Chichester, 1984, pp 81–94

    Google Scholar 

  60. Cordruwisch R, Kleinitz W, Widdel F. Sulfate-reducing bacteria and their economic activities. In: Proceedings, International Symposium Oilfield and Geothermal Chemistry, Richardson, Texas, SPE paper SPE 13554, 1985, pp 55–64

    Google Scholar 

  61. Hall GR. Control of microbiologically induced corrosion of concrete in waste water collection and treatment systems. Materials Performance 1989: 28 (10): 45–50

    Google Scholar 

  62. Boutelje JB, Goransson B. Decay in wood constructions below the ground water table. In: Proceedings, 2nd International Biodeterioration Symposium. Applied Science Publishers, London. 1972, pp 311–318

    Google Scholar 

  63. Jones EBG, Irvine J. The role of marine fungi in the biodeterioration of materials. In: Proceedings, 2nd International Biodeterioration Symposium. Applied Science Publishers, London. 1972, pp 422–431

    Google Scholar 

  64. Barrett J. Yonge CM. Collins pocket guide to the sea shore. Collins. London, 1984

    Google Scholar 

  65. Turner RD. An overview of research on marine borers. In: Costlow JD. Tipper, RC (eds.) Proceedings, Symposium on Marine Biodeterioration. Spon. London, 1984, pp 3–17

    Google Scholar 

  66. Kühl H. Teredos and fouling. In: Traurig J-O (ed.) Fishing boats of the world. Fishing News ( Books ), London, 1975, pp 227–229

    Google Scholar 

  67. Scott PJB. Biodeterioration of plastics in the sea. Materials Performance 1989; 28 (10): 52–55

    Google Scholar 

  68. Connolly RA. Effect of seven year marine exposure on organic materials. Materials Research and Standards 1963; 3: 193–201

    Google Scholar 

  69. Connolly RA, DeCoste JB, Gaupp HL. Marine exposure of polymeric materials and cables after fifteen years. Journal of Materials 1970; 5: 339–362

    Google Scholar 

  70. Wolock I. Polymeric materials and composites. In: Schumacher M (ed.) Seawater corrosion handbook. Noyes Data Corporation, N. J.. 1979. pp 455–463

    Google Scholar 

  71. Pipe A. North Sea fouling organisms and their potential effects on the corrosion of North Sea structures. Proceedings, Symposium Marine Corrosion on Offshore Structures. Society of Chemical Industry, London, 1979, pp 13–22

    Google Scholar 

  72. Forteath GNR, Dicken GB, Ralph R. Patterns of macrofouling on steel platforms in the central and northern North Sea. In: Lewis JR, Mercer AD (eds.) Corrosion and marine growth on offshore structures. Ellis Horwood, Chichester, 1984, pp 10–22

    Google Scholar 

  73. Taylor Woodrow Research Laboratories. Surveys of existing concrete marine structures. UK Department of Energy Offshore Technology Report OTH 87 244. HMSO, London, 1991

    Google Scholar 

  74. Terasaki F, Ohtani Y, Ikeda A, Nakanishi M. Steel plates for pressure vessels in sour environment applications. Proceedings, International Conference on Fusion Welded Steel Pressure Vessels. Mechanical Engineering Publications, London, 1984, pp 45–64

    Google Scholar 

  75. Denham JB, Taylor RE. Pressure vessels in the oil industry. Proceedings, International Conference on Fusion Welded Steel Pressure Vessels. Mechanical Engineering Publications, London, 1984, pp 123–134

    Google Scholar 

  76. Taira T, Koyabashi Y, Matsumoto K, Tsukad K. Resistance of line-pipe steels to wet sour gas. Corrosion-NACE 1984; 40 (9): 478–486

    Article  Google Scholar 

  77. Johnson WC. Detrimental materials at the paint-steel inter-face. In: Berger DM, Wint RF (eds) New concepts for coating protection of steel structures, ASTM STP 841. ASTM, Philadelphia, 1984, pp 28–43

    Chapter  Google Scholar 

  78. Whitehouse NR. Survey of painting practice for protection of offshore structures. Paint Research Association, Teddington, 1983

    Google Scholar 

  79. Carruthers R. The use of 90/10 cupro-nickel as a splash zone cladding. Proceedings, Conference on Copper Alloys in Marine Environments. Copper Development Association, Potter’s Bar, 1985, paper 6

    Google Scholar 

  80. Yoshida T, Matsui S, Atsuta T. Corrosion problems of pipeline and a solution. Proceedings, 12th Offshore Technology Conference, Houston, paper no. OTC 3891, 1980, pp 361–370

    Google Scholar 

  81. Salama MM, Tetlow, JH. Selection and evaluation of high strength steel for Hutton TLP tension leg elements. Proceedings, 15th Offshore Technology Conference, Houston, paper no. OTC 4449, 1983, pp 57–63

    Google Scholar 

  82. Chandler KA, Bayliss DA. Corrosion protection of steel structures. Elsevier, London, 1985

    Google Scholar 

  83. Coke, JR. Protective coatings for offshore equipment and structures. Materials Performance 1990; 29 (5): 35–38

    Google Scholar 

  84. Ashworth V. The theory of cathodic protection and its relation to the electrochemical theory of corrosion. In: Ashworth V, Booker CJL (eds) Cathodic protection. Ellis Horwood, Chichester, 1986, pp 13–30

    Google Scholar 

  85. Morgan J. Cathodic protections. NACE, Houston, 1987

    Google Scholar 

  86. Jensen JO. Ships and semi-submersibles. In: Ashworth V, Booker CJL (eds) Cathodic protection. Ellis Horwood, Chichester, 1986, pp 128–142

    Google Scholar 

  87. Wyatt BS. Cathodic protection of fixed offshore structures. In: Ashworth V, Booker CJL (eds) Cathodic protection. Ellis Horwood, Chichester, 1986, pp 143–171

    Google Scholar 

  88. Cochran JC. New mathematical models for designing offshore sacrificial cathodic protection systems. Proceedings, 12th Offshore Technology Conference, Houston, paper no. OTC 3858, 1980, pp 27–35

    Google Scholar 

  89. Wilkins NJM. Cathodic protection of concrete structures. In: Ashworth V, Booker, CJL (eds) Cathodic protection. Ellis Horwood, Chichester, 1986, pp 172–182

    Google Scholar 

  90. Wyatt BS and Lothian AM. Cathodic protection of a roll- on/roll-off facility. Materials Performance 1990; 29 (4): 17–23

    Google Scholar 

  91. Tighe-Ford DJ, McGrath JN and Wareham MP. Evaluation of warship cathodic protection systems. Institute of Marine Engineers Paper, March 1988. Marine Management Holdings, London, 1988

    Google Scholar 

  92. Levings EA, Finnegan JE, McKie WM and Strommen RD. Proceedings, 15th Offshore Technology Conference, Houston, paper no. OTC 4565, 1983, pp 445–450

    Google Scholar 

  93. Parker ME, Peattie EG. Pipe line corrosion and cathodic protection. Gulf Publishing Company, Houston. 1984

    Google Scholar 

  94. Dwight HB. Calculation of resistances to ground. Electrical Engineering 1936; 55: 1319–1328

    Google Scholar 

  95. Smith CA. Designing a cathodic protection system. Electrical Review 1980; 207 (18): 35–41

    Google Scholar 

  96. Sander KF. The problem of predicting potential and current distributions. In: Ashworth V, Booker CJL (eds) Cathodic protection. Ellis Horwood, Chichester. 1986, pp 31–37

    Google Scholar 

  97. Fu JW, Chow JSK. Calculation of cathodic protection potential and current distributions using an integral equation numerical method. In: Collected papers on cathodic protection current distribution. NACE, Houston, 1989. pp 15–18

    Google Scholar 

  98. Tischuk JL, Huber DS. Use of economic analysis to select the most cost effective method of downhole corrosion control. Proceedings, Conference UK Corrosion 1984. Institution of Corrosion Science and Technology. London. 1984, pp 13–18

    Google Scholar 

  99. Jones LW. Corrosion and water technology for petroleum producers. OGCI Publications, Tulsa. 1988.

    Google Scholar 

  100. Guezennec J. Therene M. A study of the influence of cathodic protection on the growth of SRB and corrosion in marine sediments by electrochemical techniques. Proceedings, 1st European Federation of Corrosion Workshop on Microbial Corrosion. Sintra, Portugal. 1988. Elsevier, London, 1988, pp 256–265

    Google Scholar 

  101. Bessems E. Biological aspects of the assessment of biocides. Proceedings, Conference on Microbial Corrosion. Metals Society, London, 1983, pp 84–89

    Google Scholar 

  102. Chamberlain AHL, Garner BJ. Microbial fouling and corrosion of 90/10 copper-nickel alloys. Proceedings. 1st European Federation of Corrosion Workshop on Microbial Corrosion, Sintra, Portugal, 1988. Elsevier. London. 1988. pp 431 — 442

    Google Scholar 

  103. Brady RF, Griffith JR, Love KS, Field DE. Non-toxic alternatives to antifouling coatings. Proceedings. 2nd International Conference Polymers in a Marine Environment. Marine Management ( Holdings ). London. 1989. pp 191–196

    Google Scholar 

  104. Poretz I. Precision reactivation of antifouling paints. In: Berger DM, Wint RF (eds) New concepts for coating protection of steel structures. ASTM STP 841. ASTM. Philadelphia, 1984, 79–94

    Chapter  Google Scholar 

  105. Miller D, Cameron AM, Shone EB. Applications of novel anti-fouling coatings on offshore structures. In: Lewis JR. Mercer AD (eds) Corrosion and marine growth on offshore structures. Ellis Horwood, Chichester. 1984. pp 139–148

    Google Scholar 

  106. Schnabel W. Polymer degradation. Hanser International. Munich, 1981

    Google Scholar 

  107. Manley TR, Harrison DA. The fire performance of cables on warships. Proceedings, Conference Polymers in a Marine Environment. Institution of Marine Engineers. London. 1989. pp 103–108

    Google Scholar 

  108. Marks PR. The fire endurance of glass-reinforced epoxy pipes. Proceedings, Conference Polymers in a Marine Environment. Institution of Marine Engineers. London. 1989. pp 69–78

    Google Scholar 

  109. Hunter, J. The advantages of glass-reinforced phenolics in demanding construction applications. Proceedings. Conference Polymers in Offshore Engineering. Plastics and Rubber Institute. London. 1988. pp 25/1–25/15

    Google Scholar 

  110. Foscante RE, Kline HH. Coating concrete — an overview. Materials Performance 1988; 27 (9): 34–36

    Google Scholar 

  111. Ailor WH (ed.). Atmospheric corrosion. John Wiley. New York, 1982

    Google Scholar 

  112. Lee TS, Money KL. Difficulties in develo** tests to simulate corrosion in marine environments. Materials Performance 1984; 24 (8): 28–33

    Google Scholar 

  113. Castle JE, Chamberlain AHL, Garner B, Parvizi MS. Aladjem A. The use of synthetic or natural seawater in studies of the corrosion of copper alloys. In: Francis PE, Lee TS (eds) The use of synthetic environments for corrosion testing, ASTM STP 970. ASTM, Philadelphia, 1988, pp 174–189

    Chapter  Google Scholar 

  114. Mack RD, Wilhelm SM, Steinberg BG. Laboratory corrosion testing of metals and alloys in environments containing hydrogen sulphide. In: Haynes GS, Baboian R (eds) Laboratory corrosion tests and standards, ASTM STP 866. ASTM. Philadelphia, 1985, pp 246–259

    Chapter  Google Scholar 

  115. ASTM G46–76. Standard recommended practice for examination and evaluation of pitting corrosion. ASTM. Philadelphia, 1980

    Google Scholar 

  116. Hubbel M, Price C, Heidersback R. Crevice and pitting corrosion tests for stainless steels. In: Haynes GS. Baboian R (eds) Laboratory corrosion tests and standards. ASTM STP 866. ASTM. Philadelphia, 1985, pp 324–336

    Chapter  Google Scholar 

  117. ASTM G48–76. Standard test method for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution. ASTM, Philadelphia. 1980

    Google Scholar 

  118. Vyas B. Erosion-corrosion. In: Preece CM (ed.) Treatise on materials science and technology, vol. 16: Erosion. Academic Press.New York, 1979, pp 357–390

    Google Scholar 

  119. Preece CM. Cavitation erosion. In: Preece CM (ed.) Treatise on materials science and technology, vol. 16: Erosion. Academic Press. New York. 1979, pp 249–305

    Google Scholar 

  120. Matsumura M. Oka Y, Okumoto S, Furaya H. Jet-in-slit test for studying erosion-corrosion. In: Haynes GS. Baboian R (eds) Laboratory corrosion tests and standards. ASTM STP 866. ASTM. Philadelphia, 1985. pp 358–370

    Chapter  Google Scholar 

  121. Fulmer Research Institute. Fulmer materials optimiser. Fulmer Research Institute, London, 1980

    Google Scholar 

  122. ASTM G-36 73. Standard practice for the performance of stress corrosion cracking tests in a boiling magnesium chloride solution. ASTM. Philadelphia. 1981

    Google Scholar 

  123. NACE TM-01–77. Testing of metals for resistance to sulphide stress cracking at ambient temperatures. NACE. Houston. 1977

    Google Scholar 

  124. NACE MR-01–75. Sulphide stress cracking resistant metallic materials for oil field equipment. NACE. Houston. 1984

    Google Scholar 

  125. Whitehead T. Baloun CH. Evaluating the suitability of the NACE standard test TM-01–77 for testing 13c/c chromium martensitic stainless steels for sulphide stress cracking resistance. In: Haynes GS. Baboian R (eds) Laboratory corrosion tests and standards. ASTM STP 866. ASTM. Philadelphia. 1985. pp 400–414

    Chapter  Google Scholar 

  126. Treseder RS. Kachik EA. MTT corrosion tests for iron- and nickel-base corrosion resistance alloys. In: Haynes GS. Baboian R (eds) Laboratory corrosion tests and standards. ASTM STP 866. ASTM. Philadelphia. 1985. pp 373–399

    Chapter  Google Scholar 

  127. NACE TM-02–84. Test method for the evaluation of pipeline materials for resistance to stepwise cracking. NACE. Houston. 1984

    Google Scholar 

  128. ASTM-G8–79. Standard test for cathodic disbonding of pipeline coatings. ASTM. Philadelphia. 1982.

    Google Scholar 

  129. Nye TL. Smith SW. Hartt WH. Once through vs. recirculated seawater testing for calcareous deposit polarisation of cathodicallv protected steel. In: Haynes GS. Baboian R (eds). Laboratory corrosion tests and standards. ASTM STP 866. ASTM. Philadelphia. 1985. pp 207–214

    Chapter  Google Scholar 

  130. Jones RJ. Characterisation of temperature resistance. In: Engineered materials handbook, vol. 2: Plastics. ASM International. Metals Park. Ohio. 1987. pp 559–567

    Google Scholar 

  131. ASTM G53. Recommended practice for operating light and w ater exposure apparatus for exposure of non-metallic materials. ASTM. Philadelphia. 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag London Limited

About this chapter

Cite this chapter

Reuben, R.L. (1994). Marine Corrosion and Biodeterioration. In: Materials in Marine Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2011-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2011-7_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2013-1

  • Online ISBN: 978-1-4471-2011-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation