Fuzzy Combinatorial Optimization Problems

  • Reference work entry
  • First Online:
Handbook of Combinatorial Optimization

Abstract

Decision-making is an ongoing process for humankind. Many of these real-world decisions can be modeled using the problems contained in the generalized area of combinatorial optimization. Another area with recent advancements is fuzzy logic.

This chapter is concerned about the fuzzy solution approaches of combinatorial optimization problems. First section presents the fuzzy graph theory. Fuzzy linear programming and fuzzy integer programming are explained in second and third sections. Fuzzy spanning trees, fuzzy shortest path, fuzzy network flows, and the fuzzy minimum cost flow problems are introduced at Sects. 4–7. Fuzzy matching algorithm, fuzzy matroids, and fuzzy approximation algorithm are discussed in Sects. 8–10. Basic information on fuzzy knapsack and fuzzy bin-packing problems is given in Sects. 11 and 12. Fuzzy multicommodity flows and edge-disjoint paths are explained in Sect. 13 in detail with four subsections. Fuzzy network design problems and fuzzy traveling salesman problem are provided in Sects. 14 and 15 respectively. Finally, fuzzy facility location is presented in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Recommended Reading

  1. R. Diestel, Graph Theory (Springer, New York, 1997)

    MATH  Google Scholar 

  2. H. Korte, J. Vygen, Combinatorial Optimization Theory and Algorithms, 4th edn. (Springer, Berlin, 2008)

    Google Scholar 

  3. A. Rosenfeld, Fuzzy graphs, in Fuzzy Sets and Their Applications, ed. by L.A. Zadeh, K.S. Fu, M. Shimura (Academic, New York, 1975), pp. 77–95

    Google Scholar 

  4. P. Bhattacharya, Some remarks on fuzzy graphs. Pattern Recognit. Lett. 6, 297–302 (1987)

    MATH  Google Scholar 

  5. F. Harary, Graph Theory, Indian Student Edition, (Narosa/Addison Wesley, New Delhi, 1988)

    Google Scholar 

  6. K.R. Bhutani, On automorphism of fuzzy graphs. Pattern Recognit. Lett. 12, 413–420 (1991)

    Google Scholar 

  7. M.S. Sunitha, A.A. Vijayakumar, Characterization of fuzzy trees. Inf. Sci. 113, 293–300 (1999)

    MathSciNet  MATH  Google Scholar 

  8. J.N. Mordeson, P.S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs (Physica, Heidelberg, 2000)

    MATH  Google Scholar 

  9. A. NagoorGani, M. BasheerAhamed, Order and size in fuzzy graph. Bull. Pure Appl. Sci. 22E(1), 145–148 (2003)

    Google Scholar 

  10. A.N. Gani, K. Radha, On regular fuzzy graphs. J. Phys. Sci. 12, 33–40 (2008)

    Google Scholar 

  11. P. Bhattacharya, F. Suraweera, An algorithm to compute the max–min powers and a property of fuzzy graphs. Pattern Recognit. Lett. 12, 413–420 (1991)

    Google Scholar 

  12. Z. Tong, D. Zheng, An algorithm for finding the connectedness matrix of a fuzzy graph. Congr. Numer. 120, 189–192 (1996)

    MathSciNet  MATH  Google Scholar 

  13. J. Xu, The use of fuzzy graphs in chemical structure research, in Fuzzy Logic in Chemistry, ed. by D.H. Rouvry (Academic, San Diego, 1997), pp. 249–282

    Google Scholar 

  14. S. Mathew, M.S. Sunitha, Types of arcs in a fuzzy graph. Inf. Sci. 179, 1760–1768 (2009)

    MathSciNet  MATH  Google Scholar 

  15. M.S. Sunitha, A. Vijayakumar, Some metric aspects of fuzzy graphs, in Proceedings of the Conference on Graph Connections, ed. by R. Balakrishna, H.M. Mulder, A. Vijayakumar (CUSAT, Allied Publishers, New Delhi, 1999), pp. 111–114

    Google Scholar 

  16. M.S. Sunitha, A. Vijayakumar, Blocks in fuzzy graphs. J. Fuzzy Math. 13(1), 13–23 (2005)

    MathSciNet  MATH  Google Scholar 

  17. M.S. Sunitha, A. Vijayakumar, Complement of a fuzzy graph. Indian J. Pure Appl. Math. 33(9), 1451–1464 (2002)

    MathSciNet  MATH  Google Scholar 

  18. K.R. Bhutani, A. Rosenfeld, Fuzzy end nodes in fuzzy graphs. Inf. Sci. 152, 323–326 (2003)

    MathSciNet  MATH  Google Scholar 

  19. K.R. Bhutani, A. Rosenfeld, Geodesics in fuzzy graphs. Electron. Notes Discret. Math. 15, 51–54 (2003)

    MathSciNet  Google Scholar 

  20. K. Sameena, M.S. Sunitha, Strong arcs and maximum spanning trees in fuzzy graphs. Int. J. Math. Sci. 5(1), 17–20 (2006)

    MathSciNet  MATH  Google Scholar 

  21. K. Sameena, M.S. Sunitha, Characterisation of g-self centered fuzzy graphs. J. Fuzzy Math. 16(4), 787–792 (2008)

    MathSciNet  MATH  Google Scholar 

  22. K. Sameena, M.S. Sunitha, Distance in fuzzy graphs. Ph.D. Thesis, National Institute of Technology Calicut, India, 2008

    Google Scholar 

  23. P. Gupta, M. KumarMehlawat, Bector–Chandra type duality in fuzzy linear programming with exponential membership functions. Fuzzy Sets Syst. 160, 3290–3308 (2009)

    MATH  Google Scholar 

  24. N. Mahdavi-Amiria, S.H. Nasseria, Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables. Fuzzy Sets Syst. 158, 1961–1978 (2007)

    Google Scholar 

  25. J. Ramík, Duality in fuzzy linear programming with possibility and necessity relations. Fuzzy Sets Syst. 157, 1283–1302 (2006)

    MATH  Google Scholar 

  26. M. Inuiguchi, Necessity measure optimization in linear programming problems with fuzzy polytopes. Fuzzy Sets Syst. 158, 1882–1891 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Y.K. Wua, S.M. Guub, J.C. Liu, Reducing the search space of a linear fractional programming problem under fuzzy relational equations with max-Archimedean t-norm composition. Fuzzy Sets Syst. 159, 3347–3359 (2008)

    Google Scholar 

  28. A. Kumar, J. Kaur, P. Singh, A new method for solving fully fuzzy linear programming problems. Appl. Math. Model. 35, 817–823 (2011)

    MathSciNet  MATH  Google Scholar 

  29. H. Lotfi, T. Allahviranloo, M.A. Jondabeh, L. Alizadeh, Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution F. Appl. Math. Model. 33, 3151–3156 (2009)

    MathSciNet  MATH  Google Scholar 

  30. X. Zenga, S. Kanga, F. Li, L. Zhang, P. Guo, Fuzzy multi-objective linear programming applying to crop area planning. Agric. Water Manage. 98, 134–142 (2010)

    Google Scholar 

  31. T. Liang, Distribution planning decisions using interactive fuzzy multi-objective linear programming. Fuzzy Sets Syst. 157, 1303–1316 (2006)

    MATH  Google Scholar 

  32. D. Peidro, J. Mula, M. Jimenez, M. Botella, A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. Eur. J. Oper. Res. 205, 65–80 (2010)

    MATH  Google Scholar 

  33. J.J. Buckley, T. Feuring, Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy Sets Syst. 109, 35–53 (2000)

    MathSciNet  MATH  Google Scholar 

  34. S. Chanas, P. Zielinski, On the equivalence of two optimization methods for fuzzy linear programming problems. Eur. J. Oper. Res. 121, 56–63 (2000)

    MathSciNet  MATH  Google Scholar 

  35. C. Stanciulescu, Ph. Fortemps, M. Instale, V. Wertz, Multi objective fuzzy linear programming problems with fuzzy decision variables. Eur. J. Oper. Res. 149, 654–675 (2003)

    MATH  Google Scholar 

  36. M. Sadeghi, H.M. Hosseini, Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs). Energy Policy 34, 993–1003 (2006)

    Google Scholar 

  37. X. Liu, Measuring the satisfaction of constraints in fuzzy linear programming. Fuzzy Sets Syst. 122, 263–275 (2001)

    MATH  Google Scholar 

  38. L.H. Chen, W.C. Ko, Fuzzy linear programming models for new product design using QFD with FMEA. Appl. Math. Model. 33, 633–647 (2009)

    MATH  Google Scholar 

  39. H. Katagiri, M. Sakawa, K. Kato, I. Nishizaki, Interactive multi objective fuzzy random linear programming: maximization of possibility and probability. Eur. J. Oper. Res. 188, 530–539 (2008)

    MathSciNet  MATH  Google Scholar 

  40. R. Bellman, L.A. Zadeh, Decision making in a fuzzy environment. Manage. Sci. 17B, 141–164 (1970)

    MathSciNet  Google Scholar 

  41. H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978)

    MATH  Google Scholar 

  42. F. Herrera, J.L. Verdegay, H.J. Zimmermann, Boolean programming with fuzzy constraints. Fuzzy Sets Syst. 55, 285–293 (1993)

    MathSciNet  MATH  Google Scholar 

  43. M.S. Osman, O.M. Saad, A.G. Hasan, Solving a special class of large-scale fuzzy multi objective integer linear programming problems. Fuzzy Sets Syst. 107, 289–297 (1999)

    MathSciNet  MATH  Google Scholar 

  44. J.J. Buckley, L.J. Jowers, Monte Carlo Methods in Fuzzy Optimization (Springer, Berlin, 2008)

    MATH  Google Scholar 

  45. K. Eshghi, J. Nematian, Special classes of fuzzy integer programming models with all-different constraints. Sci. Iran. Trans. E 16, 1–10 (2009)

    Google Scholar 

  46. R.R. Tan, Using fuzzy numbers to propagate uncertainty in matrix-based LCI.LCI. Int. J. Life Cycle Assess. 13, 585–593 (2008)

    Google Scholar 

  47. R.R. Tan, A.B. Culaba, K.B. Aviso, A fuzzy linear programming extension of the general matrix-based life cycle model. J. Clean. Prod. 16, 1358–1367 (2008)

    Google Scholar 

  48. A.S. Asratian, N.N. Kuzjurin, Two sensitivity theorems in fuzzy integer Programming. Discret. Appl. Math. 134, 129–140 (2004)

    MathSciNet  MATH  Google Scholar 

  49. G.H. Huang, W. Baetz, G. Patry, Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socio-Econ. Plan. Sci. 29(1), 17–38 (1995)

    Google Scholar 

  50. R.R. Tan, D.K.S. Ng, D.C.Y. Foo, K.B. Aviso, Crisp and fuzzy integer programming models for optimal carbon sequestration retrofit in the power sector. Chem. Eng. Res. Des. 88, 1580–1588 (2010)

    Google Scholar 

  51. A.H. Gharehgozli, R.T. Moghaddam, N. Zaerpour, A fuzzy-mixed-integer goal programming model for a parallel-machine scheduling problem with sequence-dependent set up times and release dates. Robot. Comput.-Integr. Manuf. 25, 853–859 (2009)

    Google Scholar 

  52. Y.P. Li, G.H. Huang, X.H. Nie, S.L. Nie, A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems. Eur. J. Oper. Res. 189, 399–420 (2008)

    MathSciNet  MATH  Google Scholar 

  53. M. Allahviranloo, S. Afandizadeh, Investment optimization on port’s development by fuzzy integer programming. Eur. J. Oper. Res. 186, 423–434 (2008)

    MathSciNet  MATH  Google Scholar 

  54. O.E. Emam, A fuzzy approach for bi-level integer non-linear programming problem. Appl. Math. Comput. 172, 62–71 (2006)

    MathSciNet  MATH  Google Scholar 

  55. S. Vajda, Probabilistic Programming (Academic, New York, 1972)

    Google Scholar 

  56. M. Sakawa, Fuzzy Sets and Interactive Optimization (Plenum, New York, 1993)

    MATH  Google Scholar 

  57. J. Gao, M. Lu, Fuzzy quadratic minimum spanning tree problem. Appl. Math. Comput. 164, 773–788 (2005)

    MathSciNet  MATH  Google Scholar 

  58. H. Katagiri, M. Sakawaa, H. Ishii, Fuzzy random bottleneck spanning tree problems using possibility and necessity measures. Eur. J. Oper. Res. 152, 88–95 (2004)

    MATH  Google Scholar 

  59. H. Katagiri, E.B. Mermri, M. Sakawa, K. Kato, A study on fuzzy random minimum spanning tree problems through possibilistic programming and the expectation optimization model, in The 47th IEEE International Midwest Symposium on Circuits and Systems, Hiroshima, Japan, (2004), pp. III-49–52

    Google Scholar 

  60. S. Moazeni, Fuzzy shortest path problem with finite fuzzy quantities. Appl. Math. Comput. 183, 160–169 (2006)

    MathSciNet  MATH  Google Scholar 

  61. T.N. Chuang, J.Y. Kung, The fuzzy shortest path length and the corresponding shortest path in a network. Comput. Oper. Res. 32, 1409–1428 (2005)

    MathSciNet  Google Scholar 

  62. T.-N. Chuang, J.Y. Kung, A new algorithm for the discrete fuzzy shortest path problem in a network. Appl. Math. Comput. 174, 1660–1668 (2006)

    MathSciNet  Google Scholar 

  63. F. Hernandes, A. Yamakami, Um algoritmopara o problema de caminhomínimoemgrafos com custosnos arcos fuzzy, in XV CongressoBrasileiro de Automática, Gramado, RS, 2004

    Google Scholar 

  64. J.A. Moreno, J.M. Moreno, J.L. Verdegay, Fuzzy location problems on networks. Fuzzy Sets Syst. 142, 393–405 (2004)

    MATH  Google Scholar 

  65. S.M.A. Nayeem, M. Pal, Shortest path problem on a network with imprecise edge weight. Fuzzy Optim. Decis. Mak. 4, 293–312 (2005)

    MathSciNet  MATH  Google Scholar 

  66. S. Okada, Fuzzy shortest path problems incorporating interactivity among paths. Fuzzy Sets Syst. 142(3), 335–357 (2004)

    MATH  Google Scholar 

  67. A. Sengupta, T.K. Pal, Solving the shortest path problem with intervals arcs. Fuzzy Optim. Decis. Mak. 5, 71–89 (2006)

    MathSciNet  MATH  Google Scholar 

  68. M.T. Takahashi, Contribuiçõesaoestudo de grafos fuzzy: Teoria e algoritmos. Ph.D. Thesis, Faculdade de EngenhariaElétrica e de Computação, UNICAMP, 2004

    Google Scholar 

  69. F. Hernandes, M.T. Lamata, J.L. Verdegay, A. Yamakami, The shortest path problem on networks with fuzzy parameters. Fuzzy Sets Syst. 158, 1561–1570 (2007)

    MathSciNet  MATH  Google Scholar 

  70. A. Tajdin, I. Mahdavi, N. Mahdavi-Amiri, B. Sadeghpour-Gildeh, Computing a fuzzy shortest path in a network with mixed fuzzy arc lengths using \(\alpha\)-cuts. Comput. Math. Appl. 60, 989–1002 (2010)

    MathSciNet  MATH  Google Scholar 

  71. R.E. Bellman, L.A. Zadeh, Decision-making in a fuzzy environment. Manage. Sci. 17B, 141–164 (1970)

    MathSciNet  Google Scholar 

  72. E. Keshavarz, E. Khorram, A fuzzy shortest path with the highest reliability. J. Comput. Appl. Math. 230, 204–212 (2009)

    MathSciNet  MATH  Google Scholar 

  73. X.K. Iwamura, Z. Shao, New models for shortest path problem with fuzzy arc lengths. Appl. Math. Model. 31, 259–269 (2007)

    MATH  Google Scholar 

  74. ST. Liu, C. Kao, Network flow problems with fuzzy arc lengths. IEEE Trans. Syst. Man Cybern. B 34(1), 765–769 (2004)

    Google Scholar 

  75. P. Diamond, A fuzzy max-flow min-cut theorem. Fuzzy Sets Syst. 119, 139–148 (2001)

    MathSciNet  MATH  Google Scholar 

  76. L. Georgiadis, Arborescence optimization problems solvable by Edmonds’ algorithm. Theor. Comput. Sci. 301, 427–437 (2003)

    MathSciNet  MATH  Google Scholar 

  77. M. Ghatee, S.M. Hashemi, Generalized minimal cost flow problem in fuzzy nature: an application in bus network planning problem. Appl. Math. Model. 32, 2490–2508 (2008)

    MathSciNet  MATH  Google Scholar 

  78. S.M. Hashemi, M. Ghatee, E. Nasrabadi, Combinatorial algorithms for the minimum interval cost flow problem. Appl. Math. Comput. 175, 1200–1216 (2006)

    MathSciNet  MATH  Google Scholar 

  79. M. Ghatee, S.M. Hashemi, Ranking function-based solutions of fully fuzzified minimal cost flow problem. Inf. Sci. 177, 4271–4294 (2007)

    MathSciNet  MATH  Google Scholar 

  80. M. Ghatee, S.M. Hashemi, Application of fuzzy minimum cost flow problems to network design under uncertainty. Fuzzy Sets Syst. 160, 3263–3289 (2009)

    MathSciNet  MATH  Google Scholar 

  81. M. Ghatee, S.M. Hashemi, M. Zarepisheh, E. Khorram, Preemptive priority-based algorithms for fuzzy minimal cost flow problem: an application in hazardous materials transportation. Comput. Ind. Eng. 57, 341–354 (2009)

    Google Scholar 

  82. D. Conte, P. Fogg\(\imath \)ay, X.C. Sansoney, M. Vento, Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(3), 265–298 (2004)

    Google Scholar 

  83. S. Medasani, R. Krishnapuram, Y.S. Choi, Graph matching by relaxation of fuzzy assignments. IEEE Trans. Fuzzy Syst. 9, 173–182 (2001)

    Google Scholar 

  84. S. Medasani, R. Krishnapuram, A fuzzy approach to content-based image retrieval, in FUZZ-IEEE ’99: IEEE International Fuzzy Systems Conference Proceedings, Seoul, Korea, 22-25 Aug 1999 (IEEE, Piscataway, 1999), pp. 1251–1260

    Google Scholar 

  85. L. Liu, Y. Li, L. Yang, The maximum fuzzy weighted matching models and hybrid genetic algorithm. Appl. Math. Comput. 181, 662–674 (2006)

    MathSciNet  MATH  Google Scholar 

  86. L. Liu, X. Gao, Maximum random fuzzy weighted matching models and hybrid genetic algorithm, http://orsc.edu.cn/’’xfgao/

  87. M. Balakrishnarajan, P. Venuvanaligam, An artificial intelligence approach for the generation and enumeration of perfect matching on graphs. Comput. Math. Appl. 29, 115–121 (1995)

    Google Scholar 

  88. A. Hsieh, C. Ho, K. Fan, An extension of the bipartite weighted matching problem. Pattern Recognit. Lett. 16, 347–353 (1995)

    Google Scholar 

  89. A. Hsieh, K. Fan, T. Fan, Bipartite weighted matching for on-line handwritten Chinese character recognition. Pattern Recognit. 28, 143–151 (1995)

    Google Scholar 

  90. J. Lamb, A note on the weighted matching with penalty problem. Pattern Recognit. Lett. 19, 261–263 (1998)

    MathSciNet  MATH  Google Scholar 

  91. G. Steiner, G. Yeomans, A linear time algorithm for maximum matching in convex, bipartite graphs. Comput. Math. Appl. 31, 91–96 (1996)

    MathSciNet  MATH  Google Scholar 

  92. J. Kim, N. Wormal, Random matchings which induce Hamilton cycles and Hamiltonian decompositions of random regular graphs. J. Combin. Theory B 81, 20–44 (2001)

    MATH  Google Scholar 

  93. M. Zito, Small maximal matchings in random graphs. Theor. Comput. Sci. 297, 487–507 (2003)

    MathSciNet  MATH  Google Scholar 

  94. D. Dubois, H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty (Plenum, New York, 1988)

    MATH  Google Scholar 

  95. B. Liu, Y.K. Liu, Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10, 445–450 (2002)

    Google Scholar 

  96. B. Liu, Theory and Practice of Uncertain Programing (Physica, New York, 2002)

    Google Scholar 

  97. B. Liu, Uncertainty Theory: An Introduction to Its Axiomatic Foundations (Springer, Berlin, 2004)

    Google Scholar 

  98. A. Charnes, W.W. Copper, Chance-constrained programming. Manage. Sci. 6, 73–79 (1959)

    MATH  Google Scholar 

  99. B. Liu, K. Iwamura, A note on chance constrained programming with fuzzy coefficients. Fuzzy Sets Syst. 100, 229–233 (1998)

    MathSciNet  MATH  Google Scholar 

  100. B. Liu, Dependent-chance programming with fuzzy decisions. IEEE Trans. Fuzzy Syst. 7(3), 354–360 (1999)

    Google Scholar 

  101. H. Haken, M. Schanz, J. Starke, Treatment of combinatorial optimization problems using selection equations with cost terms. Part I. Two-dimensional assignment problems. Phys. D 134, 227–241 (1999)

    MathSciNet  MATH  Google Scholar 

  102. H.W. Kuhn, The Hungarian method for the assignment problem. Nav. Res. Logist. Quart. 2, 253–258 (1996)

    Google Scholar 

  103. B. Werners, Interactive multiple objective programming subject to Kexible constraints. Eur. J. Oper. Res. 31, 342–349 (1987)

    MathSciNet  MATH  Google Scholar 

  104. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MathSciNet  MATH  Google Scholar 

  105. M.S. Chen, On a fuzzy assignment problem. Tamkang J. 22, 407–411 (1985)

    MATH  Google Scholar 

  106. X. Wang, Fuzzy optimal assignment problem. Fuzzy Math. 3, 101–108 (1987)

    Google Scholar 

  107. D. Dubois, P. Fortemps, Computing improved optimal solutions to max - min flexible constraint satisfaction problems. Eur. J. Oper. Res. 118, 95–126 (1999)

    MATH  Google Scholar 

  108. M. Sakawa, I. Nishizaki, Y. Uemura, Interactive fuzzy programming for two-level linear and linear fractional production and assignment problems: a case study. Eur. J. Oper. Res. 135, 142–157 (2001)

    MathSciNet  MATH  Google Scholar 

  109. S. Chanas, W. Kolodziejczyk, A. Machaj, A fuzzy approach to the transportation problem. Fuzzy Sets Syst. 13, 211–221 (1984)

    MathSciNet  MATH  Google Scholar 

  110. M. Tada, H. Ishii, An integer fuzzy transportation problem. Comput. Math. Appl. 31, 71–87 (1996)

    MathSciNet  MATH  Google Scholar 

  111. S. Chanas, D. Kuchta, Fuzzy integer transportation problem. Fuzzy Sets Syst. 98, 291–298 (1998)

    MathSciNet  Google Scholar 

  112. S. Chanas, D. Kuchta, A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets Syst. 82, 299–305 (1996)

    MathSciNet  Google Scholar 

  113. C.J. Lin, U.P. Wen, A labeling algorithm for the fuzzy assignment problem. Fuzzy Sets Syst. 142, 373–391 (2004)

    MathSciNet  MATH  Google Scholar 

  114. Y. Feng, L. Yang, A two-objective fuzzy k-cardinality assignment problem. J. Comput. Appl. Math. 197, 233–244 (2006)

    MathSciNet  MATH  Google Scholar 

  115. J. Majumdar, A.K. Bhunia, Elitist genetic algorithm for assignment problem with imprecise goal. Eur. J. Oper. Res. 177, 684–692 (2007)

    MATH  Google Scholar 

  116. X. Ye, J. Xu, A fuzzy vehicle routing assignment model with connection network based on priority-based genetic algorithm. World J. Model. Simul. 4, 257–268 (2008)

    Google Scholar 

  117. L. Liu, X. Gao, Fuzzy weighted equilibrium multi-job assignment problem and genetic algorithm. Appl. Math. Model. 33, 3926–3935 (2009)

    MathSciNet  MATH  Google Scholar 

  118. A. Kumar, A. Gupta, A. Kaur, Method for solving fully fuzzy assignment problems using triangular fuzzy numbers. Int. J. Comput. Inf. Eng. 3:4, 231–234 (2009)

    Google Scholar 

  119. S. Mukherjee, K. Basu, A more realistic assignment problem with fuzzy costs and fuzzy restrictions. Adv. Fuzzy Math. 5(3), 395–404 (2010)

    Google Scholar 

  120. R. Nagarajan, A. Solairaju, Computing improved fuzzy optimal Hungarian assignment problems with fuzzy costs under Robust ranking techniques. Int. J. Comput. Appl. 6(4), 6–13 (2010)

    Google Scholar 

  121. F.G. Shi, A new approach to the fuzzification of matroids. Fuzzy Sets Syst. 160, 696–705 (2009)

    MATH  Google Scholar 

  122. A. Kasperski, P. Zielinski, On combinatorial optimization problems on matroids with uncertain weights. Eur. J. Oper. Res. 177, 851–864 (2007)

    MathSciNet  MATH  Google Scholar 

  123. A. Kasperski, P. Zielinski, A possibilistic approach to combinatorial optimization problems on fuzzy-valued matroids, in Fuzzy Logic and Applications, 6th International Workshop, WILF, Crema, Italy, ed. by I. Bloch, A. Petrosino, A. Tettamanzi (Springer-Verlag, Berlin, Heidelberg, 2006), pp. 46–52

    Google Scholar 

  124. J. Fortin, A. Kasperski, P. Zielinski, Efficient methods for computing optimality degrees of elements in fuzzy weighted matroids, in Fuzzy Logic and Applications, 6th International Workshop, WILF, Crema, Italy, ed. by I. Bloch, A. Petrosino, A. Tettamanzi (Springer, Berlin, Heidelberg, 2006), pp. 99–107

    Google Scholar 

  125. A. Kasperski, P. Zielinski, Using gradual numbers for solving fuzzy-valued combinatorial optimization problems, in Foundations of Fuzzy Logic and Soft Computing, 12th International Fuzzy Systems Association World Congress, Cancun, Mexico, ed. by P. Melin, O. Castillo, L.T. Aguilar, J. Kacprzyk, W. Pedrycz (Springer, Berlin, Heidelberg, 2007), pp. 656–665

    Google Scholar 

  126. R. Goetschel, W. Voxman, Fuzzy matroids. Fuzzy Sets Syst. 27, 291–302 (1998)

    MathSciNet  Google Scholar 

  127. R. Goetschel, W. Voxman, Bases of fuzzy matroids. Fuzzy Sets Syst. 31, 253–261 (1989)

    MathSciNet  MATH  Google Scholar 

  128. R. Goetschel, W. Voxman, Fuzzy matroids and a greedy algorithm. Fuzzy Sets Syst. 37, 201–214 (1990)

    MathSciNet  MATH  Google Scholar 

  129. I.-C. Hsueh, On fuzzication of matroids. Fuzzy Sets Syst. 53, 319–327 (1993)

    MathSciNet  MATH  Google Scholar 

  130. L.A. Novak, A comment on ‘Bases of fuzzy matroids’. Fuzzy Sets Syst. 87, 251–252 (1997)

    MATH  Google Scholar 

  131. L.A. Novak, On Goetschel and Voxman fuzzy matroids. Fuzzy Sets Syst. 117, 407–412 (2001)

    MATH  Google Scholar 

  132. R. Goetschel, W. Voxman, Fuzzy matroids. Fuzzy Sets Syst. 27, 291–302 (1998)

    MathSciNet  Google Scholar 

  133. R. Goetschel, W. Voxman, Fuzzy matroids and a greedy algorithm. Fuzzy Sets Syst. 37, 201–214 (1990)

    MathSciNet  MATH  Google Scholar 

  134. M.J. Hwang, C.I. Chiang, Y.H. Liu, Solving a fuzzy set covering problem. Math. Comput. Model. 40(7/8), 861–865 (2004)

    MathSciNet  MATH  Google Scholar 

  135. G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization (Wiley, New York, 1988)

    MATH  Google Scholar 

  136. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, ed. by R. Miller, J. Thatcher (Plenum, New York, 1972), pp. 85–103

    Google Scholar 

  137. F. Barahona, M. Grotschel, M. Junger, G. Reinelt, An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1998)

    Google Scholar 

  138. J. Poland, T. Zeugmann, Clustering pairwise distances with missing data: maximum cuts versus normalized cuts. Lect. Notes Comput. Sci. 4265, 197–208 (2006)

    Google Scholar 

  139. H.F. Wang, M.L. Wang, A fuzzy multi-objective linear programming. Fuzzy Sets Syst. 86, 61–72 (1997)

    MATH  Google Scholar 

  140. B. Liu, Uncertainty Theory, 2nd edn. (Springer, Berlin, 2007)

    MATH  Google Scholar 

  141. P.M. Pardalos, T. Mavridou, J. Xue, The graph coloring problem: a bibliographic survey, in Handbook of Combinatorial Optimization, vol. 2, ed. by D.Z. Du, P.M. Pardalos (Kluwer Academic, Boston, 1998), pp. 331–395

    Google Scholar 

  142. C. Eslahchi, B.N. Onagh, Vertex strength of fuzzy graphs. Int. J. Math. Math. Sci. 2006, 1–9 (2006)

    MathSciNet  Google Scholar 

  143. S. Munoz, T. Ortuno, J. Ramirez, J. Yanez, Coloring fuzzy graphs. Omega 32, 211–221 (2005)

    Google Scholar 

  144. A. Chaudhuri, K. De, Fuzzy genetic heuristic for university course timetable problem. Int. J. Adv. Soft Comput. Appl. 2(1), 100–123 (2010)

    Google Scholar 

  145. F. Eisenbrand, M. Niemeier, European Conference on Combinatorics, Graph Theory and Applications, Coloring fuzzy circular interval graphs. Electron. Notes Discret. Math. 34, 543–548 (2009)

    MathSciNet  Google Scholar 

  146. D. Kuchta, A generalisation of an algorithm solving the fuzzy multiple choice knapsack problem. Fuzzy Sets Syst. 127(2), 131–140 (2002)

    MathSciNet  MATH  Google Scholar 

  147. A. Kasperski, M. Kulej, The 0–1 knapsack problem with fuzzy data. Fuzzy Optim. Decis. Mak. 6, 163–172 (2007)

    MathSciNet  MATH  Google Scholar 

  148. F.T. Lin, J.S. Yao, Using fuzzy number in knapsack problem. Eur. J. Oper. Res. 135(1), 158–176 (2001)

    MathSciNet  MATH  Google Scholar 

  149. F.T. Lin, Solving the imprecise weight coefficients Knapsack problem by genetic algorithms, in 2006 IEEE International Conference on Systems, Man, and Cybernetics, Taipei, Taiwan, 8–11 Oct 2006

    Google Scholar 

  150. M. Sakawa, K. Kato, T. Shibano, An interactive fuzzy satisficing method for multiobjective multidimensional 0–1 knapsack problems through genetic algorithms, in Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya University, Japan, 20–22 May, 1996 (Institute of Electrical and Electronics Engineers, Piscataway, 1996), pp. 243–246

    Google Scholar 

  151. S.P. Chen, Analysis of maximum total return in the continuous knapsack problem with fuzzy object weights. Appl. Math. Model. 33, 2927–2933 (2009)

    MathSciNet  MATH  Google Scholar 

  152. F.T. Lin, J.S. Yao, Using fuzzy number in knapsack problem. Eur. J. Oper. Res. 135(1), 158–176 (2001)

    MathSciNet  MATH  Google Scholar 

  153. S.P. Chen, Analysis of maximum total return in the continuous knapsack problem with fuzzy object weights. Appl. Math. Model. 33, 2927–2933 (2009)

    MathSciNet  MATH  Google Scholar 

  154. S. Sadi-Nezhad, K.K. Damghani, N. Pilevari, Application of 0–1 fuzzy programming in optimum project selection. World Acad. Sci. Eng. Technol. 64, 335–339 (2010)

    Google Scholar 

  155. J.L. Verdegay, E. Vergara-Moreno, Fuzzy termination criteria in Knapsack problem algorithms. Mathw. Soft Comput. 7, 89–97 (2000)

    MathSciNet  MATH  Google Scholar 

  156. K. Kato, M. Sakawa, Genetic algorithms with decomposition procedures for multidimensional 0–1 knapsack problems with block angular structures. IEEE Trans. Syst. Man Cybern. B 33(3), 410–419 (2003)

    Google Scholar 

  157. F.T. Lin, On the generalized fuzzy multiconstraint 0–1 knapsack problem, in Proceedings of 2006 IEEE International Conference on Fuzzy Systems Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada 16–21 July 2006

    Google Scholar 

  158. T. Hasuike, H. Katagiri, H. Ishii, Probability maximization model of 0–1 Knapsack problem with random fuzzy variables, in Proceedings of 2008 IEEE International Conference on Fuzzy Systems, Hong Kong, China, 2008. FUZZ

    Google Scholar 

  159. H. Shih, Fuzzy approach to multilevel Knapsack problems. Comput. Math. Appl. 49, 1157–1176 (2005)

    MathSciNet  MATH  Google Scholar 

  160. J.D. Ullman, Complexity of sequencing problems, in Computer and Job-Shop Scheduling Theory, ed. by E.G. Coffman (Wiley, New York, 1975)

    Google Scholar 

  161. C.B. Kim, K.A. Seong, H. Lee-Kwang, J.O. Kim, Design and implementation of FEGCS. IEEE Trans. Syst. Man Cybern. A 28(3) (1998)

    Google Scholar 

  162. B.S. Baker, E.G. Coffman, R.L. Rivest, Orthogonal packing in two dimensions. SIAM J. Comput. 9, 846–855 (1980)

    MathSciNet  MATH  Google Scholar 

  163. B.S. Baker, D.J. Brown, H.P. Katsef, A 5=4 algorithm for two-dimensional packing. J. Algorithm 2, 348–368 (1981)

    MATH  Google Scholar 

  164. H. Dyckho, A typology of cutting and packing problems. Eur. J. Oper. Res. 44, 145–159 (1990)

    Google Scholar 

  165. M. Adamowicz, A. Albano, Nesting two-dimensional shapes in rectangular modules. Comput. Aided Des. 8(1), 27–33 (1976)

    Google Scholar 

  166. B. Chazelle, The bottom-left bin packing heuristic: an efficient implementation. IEEE Trans. Comput. C-32(8), 697–707 (1983)

    Google Scholar 

  167. R. Dong, W. Pedrycz, A granular time series approach to long-term forecasting and trend forecasting. Phys. A 387, 3253–3270 (2008)

    Google Scholar 

  168. J.N. Choi, S.K. Oh, W. Pedrycz, Identification of fuzzy models using a successive tuning method with a variant identification ratio. Fuzzy Sets Syst. 159, 2873–2889 (2008)

    MathSciNet  MATH  Google Scholar 

  169. A. Bargiela, W. Pedrycz, Granular Computing: An Introduction (Kluwer Academic, Dordrecht, 2002)

    Google Scholar 

  170. W. Pedrycz, K. Hirota, Fuzzy vector quantization with the particle swarm optimization: a study in fuzzy granulation_degranulation information processing. Signal Process. 87, 2061–2074 (2007)

    MATH  Google Scholar 

  171. S. Okada, T. Soper, A shortest path problem on a network with fuzzy arc lengths. Fuzzy Sets Syst. 109, 129–140 (2000)

    MathSciNet  MATH  Google Scholar 

  172. H.S. Shih, E.S. Lee, Fuzzy multi-level minimum cost flow problems. Fuzzy Sets Syst. 107, 159–176 (1999)

    MathSciNet  MATH  Google Scholar 

  173. M. Dehghan, M. Ghatee, B. Hashemi, Inverse of a fuzzy matrix of fuzzy numbers. Int. J. Comput. Math. (2008). doi:10.1080/00207160701874789

    Google Scholar 

  174. M. Hukuhara, Intégration des applications measurable dont la valeurest un compact convexe. FunkcialajEkvacioj 10, 205–223 (1967)

    MathSciNet  MATH  Google Scholar 

  175. P. Diamond, R. Korner, Extended fuzzy linear models and least squares estimates. Comput. Math. Appl. 33, 15–32 (1997)

    MathSciNet  MATH  Google Scholar 

  176. M. Ghatee, S.M. Hashemi, B. Hashemi, M. Dehghan, The solution and duality of imprecise network problems. Comput. Math. Appl. 55, 2767–2790 (2008)

    MathSciNet  MATH  Google Scholar 

  177. R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  178. A. Bargiela, W. Pedrycz, Granular Computing: An Introduction (Kluwer Academic, Dordrecht, 2002)

    Google Scholar 

  179. M. Ghatee, S.M. Hashemi, Traffic assignment model with fuzzy level of travel demand: an efficient algorithm based on quasi-Logit formulas. Eur. J. Oper. Res. (2008). doi:10.1016/j.ejor.2007.12.023

    Google Scholar 

  180. S.K. Das, A. Goswami, S.S. Alam, Multiobjective transportation problem with fuzzy interval cost, source and destination parameters. Eur. J. Oper. Res. 117, 100–112 (1999)

    MATH  Google Scholar 

  181. P. Ekel, W. Pedrycz, R. Schinzinger, A general approach to solving a wide class of fuzzy optimization problems. Fuzzy Sets Syst. 97, 49–66 (1998)

    MathSciNet  MATH  Google Scholar 

  182. M. Ghatee, S. Mehdi Hashemi, Some concepts of the fuzzy multi commodity flow problem and their application in fuzzy network design. Math. Comput. Model. 49, 1030–1043 (2009)

    MATH  Google Scholar 

  183. H. Liu, X. Ban, B. Ran, P.B. Mirchandani, A formulation and solution algorithm for fuzzy dynamic traffic assignment model. Transp. Res. Rec. 178 (2003)

    Google Scholar 

  184. V. Henn, What is the meaning of fuzzy costs in fuzzy traffic assignment models? Transp. Res. C 13, 107–119 (2005)

    Google Scholar 

  185. R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  186. P.R. Bhave, R. Gupta, Optimal design of water distribution networks for fuzzy demands. Civil Eng. Environ. Syst. 21, 229–245 (2004)

    Google Scholar 

  187. S.K. Das, A. Goswami, S.S. Alam, Multiobjective transportation problem with fuzzy interval cost, source and destination parameters. Eur. J. Oper. Res. 117, 100–112 (1999)

    MATH  Google Scholar 

  188. P. Ekel, W. Pedrycz, R. Schinzinger, A general approach to solving a wide class of fuzzy optimization problems. Fuzzy Sets Syst. 97, 49–66 (1998)

    MathSciNet  MATH  Google Scholar 

  189. A.M. Costa, A survey on benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32, 1429–1450 (2005)

    MathSciNet  Google Scholar 

  190. M. Ghatee, S.M. Hashemi, Some concepts of the fuzzy multicommodity flow problem and their application in fuzzy network design. Math. Comput. Model. 49, 1030–1043 (2009)

    MathSciNet  MATH  Google Scholar 

  191. D.Z. Du, J.M. Smith, J.H. Rubinstein, Advances in Steiner Trees (Kluwer Academic, Dordrecht, 2000)

    MATH  Google Scholar 

  192. F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem (North-Holland, Amsterdam, 1992)

    MATH  Google Scholar 

  193. R. Karp, in Complexity of Computer Computations, ed. by R.E. Miller, J.W. Thatcher. IBM Research Symposia Series, vol. 43 (Plenum, New York, 1972), p. 85

    Google Scholar 

  194. G. Robins, A. Zelikovsky, in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SIAM, San Francisco, 2000), pp. 770–779

    Google Scholar 

  195. M. Durand, Phys. Rev. Lett. 98, 088701 (2007)

    Google Scholar 

  196. M. Seda, Fuzzy shortest paths approximation for solving the fuzzy steiner tree problem in graphs. Int. J. Math. Comput. Sci. 1:3, 22–26 (2005)

    Google Scholar 

  197. G. Gutin, A. Punnen (eds.), Traveling Salesman Problem and Its Variations (Kluwer Academic, Dordrecht, 2002); C. Helmberg, The m-cost ATSP. Lect. Notes Comput. Sci. 1610, 242–258 (1999)

    MATH  Google Scholar 

  198. D. Feillet, P. Dejax, M. Gendreau, Traveling salesman problems with profits. Transp. Sci. 39(2), 188–205 (2005)

    Google Scholar 

  199. E. Balas, G. Martin, Roll-a-Round: Software Package for Scheduling the Rounds of a Rolling Mill (Balas and Martin Associates, Pittsburgh, 1965)

    Google Scholar 

  200. C.P. Keller, M. Goodchild, The multiobjective vending problem: a generalization of the traveling salesman problem. Environ. Plan. B 15, 447–460 (1988)

    Google Scholar 

  201. E.S. Lee, R.J. Li, Comparison of fuzzy numbers based on probability measure of fuzzy events. Comput. Math. Appl. 15, 887–896 (1988)

    MathSciNet  MATH  Google Scholar 

  202. N. Agin, Optimum seeking with branch and bound. Manage. Sci. 13(4), B-176–B-185 (1996)

    Google Scholar 

  203. E. Demeulemeester, W. Herroelen, Project Scheduling: A Research Handbook (Kluwer Academic, Boston, 2002)

    Google Scholar 

  204. S.H. Owen, M.S. Daskin, Strategic facility location: a review. Eur. J. Oper. Res. 111(3), 423–447 (1998)

    MATH  Google Scholar 

  205. D.J. van der Zee, J.G.A.J. van der Vorst, A modeling framework for supply chain simulation: Opportunities for improved decision making. Decis. Sci. 36(1), 65–95 (2005)

    Google Scholar 

  206. U. Akinc, B.M. Khumawala, An efficient branch and bound algorithm for the capacitated warehouse location problem. Manage. Sci. 23(6), 585–594 (1977)

    MathSciNet  MATH  Google Scholar 

  207. P.M. Dearing, F.C. Newruck, A capacitated bottleneck facility location problem. Manage. Sci. 25(11), 1093–1104 (1979)

    MathSciNet  MATH  Google Scholar 

  208. M.A. Badri, Combining the analytic hierarchy process and goal programming for global facility location-allocation problem. Int. J. Prod. Econ. 62(3), 237–248 (1999)

    Google Scholar 

  209. L. Dupont, Branch and bound algorithm for a facility location problem with concave site dependent costs. Int. J. Prod. Econ. 112(1), 245–254 (2008)

    MathSciNet  Google Scholar 

  210. Z. Drezner, W. Hamacher (eds.), Facility Location: Applications and Theory (Springer, New York, 2004)

    Google Scholar 

  211. A.T. Ernst, M. Krishnamoorthy, Solution algorithms for the capacitated single allocation hub location problem. Ann. Oper. Res. 86(1–4), 141–159 (1999)

    MathSciNet  MATH  Google Scholar 

  212. S. Lozano, F. Guerrero, L. Onieva, J. Larrañeta, Kohonen maps for solving a class of location-allocation problems. Eur. J. Oper. Res. 108(1), 106–117 (1998)

    MATH  Google Scholar 

  213. A. Misra, A. Roy, S.K. Das, Information-theory based optimal location management schemes for integrated multi-system wireless networks. IEEE/ACM Trans. Netw. 16, 525–538 (2008)

    Google Scholar 

  214. W. Pedrycz, F. Gomide, An Introduction to Fuzzy Sets; Analysis and Design (MIT, Cambridge MA, 1998)

    MATH  Google Scholar 

  215. W. Pedrycz, F. Gomide, Fuzzy Systems Engineering: Toward Human-Centric Computing (Wiley, Hoboken, 2007)

    Google Scholar 

  216. L.A. Zadeh, Is there a need for fuzzy logic? Inf. Sci. 178(13), 2751–2779 (2008)

    MathSciNet  MATH  Google Scholar 

  217. V. Batanovic, D. Petrovic, R. Petrovic, Fuzzy logic based algorithms for maximum covering location problems. Inf. Sci. 179(1–2), 120–129 (2009)

    MATH  Google Scholar 

  218. U. Bhattacharya, J.R. Rao, R.N. Tiwari, Fuzzy multi-criteria facility location problem. Fuzzy Sets Syst. 51(3), 277–287 (1992)

    MathSciNet  MATH  Google Scholar 

  219. H. Ishii, Y.L. Lee, K.Y. Yeh, Fuzzy facility location problem with preference of candidate sites. Fuzzy Sets Syst. 158(17), 1922–1930 (2007)

    MathSciNet  MATH  Google Scholar 

  220. C. Kahraman, D. Ruan, I. Dogan, Fuzzy group decision-making for facility location selection. Inf. Sci. 157, 135–153 (2003)

    MATH  Google Scholar 

  221. D. Dubois, H. Prade, Possibility Theory (Plenum, New York, 1988)

    MATH  Google Scholar 

  222. W. Pedrycz, F. Gomide, Fuzzy Systems Engineering: Toward Human- Centric Computing (Wiley, Hoboken, 2007)

    Google Scholar 

  223. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    MathSciNet  MATH  Google Scholar 

  224. U. Bhattacharya, J.R. Rao, R.N. Tiwari, Fuzzy multi-criteria facility location problem. Fuzzy Sets Syst. 51(3), 277–287 (1992)

    MathSciNet  MATH  Google Scholar 

  225. H. Ishii, Y.L. Lee, K.Y. Yeh, Fuzzy facility location problem with preference of candidate sites. Fuzzy Sets Syst. 158(17), 1922–1930 (2007)

    MathSciNet  MATH  Google Scholar 

  226. M. Wen, K. Iwamura, Fuzzy facility location-allocation problem under the Hurwicz criterion. Eur. J. Oper. Res. 184(2), 627–635 (2008)

    MathSciNet  MATH  Google Scholar 

  227. J. Zhou, B. Liu, Modeling capacitated location-allocation problem with fuzzy demands. Comput. Ind. Eng. 53(3), 454–468 (2007)

    Google Scholar 

  228. R. Kruse, K.D. Meyer, Statistics with Vague Data (D. Reidel, Dordrecht, 1987)

    MATH  Google Scholar 

  229. H. Kwakernaak, Fuzzy random variables–I. Definitions and theorems. Inf. Sci. 15, 1–29 (1978)

    MathSciNet  MATH  Google Scholar 

  230. Y.K. Liu, B. Liu, Fuzzy random variable: a scalar expected value operator. Fuzzy Optim. Decis. Mak. 2, 143–160 (2003)

    MathSciNet  Google Scholar 

  231. R. Goetschel, W. Voxman, Fuzzy matroids and a greedy algorithm. Fuzzy Sets Syst. 37, 201–214 (1990)

    MathSciNet  MATH  Google Scholar 

  232. D. Kuchta, A generalisation of an algorithm solving the fuzzy multiple choice knapsack problem. Fuzzy Sets Syst 127(2), 131–140 (2002)

    MathSciNet  MATH  Google Scholar 

  233. F.T. Lin, J.S. Yao, Using fuzzy number in knapsack problem. Eur. J. Oper. Res. 135(1), 158–176 (2001)

    MathSciNet  MATH  Google Scholar 

  234. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Panos M. Pardalos , Emel Kızılkaya Aydogan , Ozgur Demirtas or Birce Boga Bakirli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Pardalos, P.M., Aydogan, E.K., Gurbuz, F., Demirtas, O., Bakirli, B.B. (2013). Fuzzy Combinatorial Optimization Problems. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_68

Download citation

Publish with us

Policies and ethics

Navigation