Isolated Heart Models

  • Chapter
  • First Online:
Cardiac Electrophysiology Methods and Models

Abstract

Cardiovascular research employs a milieu of experimental models to investigate various conditions of health and disease ranging from cellular and whole organ preparations to computer modeling simulations. Uniquely, the isolated perfused heart model allows for the separation of cardiac and systemic variables, yet one can still explore typical measures used in cardiac research including myocardial function, metabolism, and/or responses to pharmacological, mechanical, and electrical components. A survey of the literature reveals that such preparations can vary greatly in design including choice of animal model, perfusion modes, perfusate compositions, and/or procedural techniques. Further, the wide array of measurements are made in the denervated heart, allowing one to conduct research in the absence of the confounding effects of sympathetic and vagal stimulations. Recently, there have been several groups employing high-resolution imaging and monitoring technologies to gain further insight into the intracardiac environment and/or the impact of various surgical procedures and implant techniques on the device–tissue interface. This chapter summarizes the major methodologies used to support these models, provides examples of usage, and clarifies the advantages and disadvantages of isolated hearts in comparison with other types of cardiovascular research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Langendorff O. Untersuchungen am uberlebenden Saugethierherzen (Investigations on the surviving mammalian heart). Arch Gesante Physiol 1895; 61:291–332.

    Article  Google Scholar 

  2. Hearse DJ, Sutherland FJ. Experimental models for the study of cardiovascular function and disease. Pharmacol Res 2000; 41:597–603.

    Article  PubMed  CAS  Google Scholar 

  3. Neubauer S, Ingwall JS. The isolated, buffer-perfused ferret heart: a new model for the study of cardiac physiology and metabolism. Lab Anim 1991; 25:348–53.

    Article  PubMed  CAS  Google Scholar 

  4. Jacob AD, Elkins N, Reiss OK, et al. Effects of acetate on energy metabolism and function in the isolated perfused rat heart. Kidney Int 1997; 52:755–60.

    Article  PubMed  CAS  Google Scholar 

  5. Coetzee A, Kotze J, Louw J, et al. Effect of oxygenated crystalloid cardioplegia on the functional and metabolic recovery of the isolated perfused rat heart. J Thorac Cardiovasc Surg 1986; 91:259–69.

    PubMed  CAS  Google Scholar 

  6. McCarthy PM, Fukamachi K, Fukumura F, et al. The Cleveland Clinic-Nimbus total artificial heart. In vivo hemodynamic performance in calves and preclinical studies. J Thorac Cardiovasc Surg 1994; 108:420–8.

    PubMed  CAS  Google Scholar 

  7. Von Scheidt W, Neudert J, Erdmann E, et al. Contractility of the transplanted, denervated human heart. Am Heart J 1991; 121:1480–8.

    Article  PubMed  CAS  Google Scholar 

  8. Quill JL, Laske TG, Hill AJ, et al. Direct visualization of a transcatheter pulmonary valve implantation within the visible heart: a glimpse into the future. Circulation 2007; 116:e548.

    Article  PubMed  Google Scholar 

  9. Hill AJ, Ahlberg SE, Wilkoff BL, et al. Dynamic obstruction to coronary sinus access: the Thebesian valve. Heart Rhythm 2006; 3:1240–1.

    Article  PubMed  Google Scholar 

  10. Anderson SE, Skadsberg ND, Laske TG, et al. Variation in pacing impedance: impact of implant site and measurement method. Pacing Clin Electrophysiol 2007; 30:1076–82.

    Article  PubMed  Google Scholar 

  11. Love CJ, Ahlberg SE, Hiniduma-Lokuge P, et al. Novel visualization of intracardiac pacing lead extractions: methodologies performed within isolated canine hearts. J Interv Card Electrophysiol 2009; 24:27–31.

    Article  PubMed  Google Scholar 

  12. Laske TG, Skadsberg ND, Iaizzo PA. A novel ex vivo heart model for the assessment of cardiac pacing systems. J Biomech Eng 2005; 127:894–8.

    Article  PubMed  Google Scholar 

  13. Chinchoy E, Soule CL, Houlton AJ, et al. Isolated four-chamber working swine heart model. Ann Thorac Surg 2000; 70:1607–14.

    Article  PubMed  CAS  Google Scholar 

  14. Hill AJ, Laske TG, Coles JA Jr, et al. In vitro studies of human hearts. Ann Thorac Surg 2005; 79:168–77.

    Article  PubMed  Google Scholar 

  15. Sigg, DC, Coles JA Jr, Gallagher WJ, et al. Opioid preconditioning: myocardial function and energy metabolism. Ann Thorac Surg 2001; 72:1576–82.

    Article  PubMed  CAS  Google Scholar 

  16. Coles JA Jr, Sigg DC, Iaizzo PA. The potential benefits of 1.5% hetastarch as a cardioplegia additive. Biochem Pharmacol 2005; 69:1553–8.

    Article  PubMed  CAS  Google Scholar 

  17. Liu CT. Techniques for isolation and performance of the perfused guinea pig working heart. Am J Vet Res 1986; 47:1032–43.

    PubMed  CAS  Google Scholar 

  18. Glower DD, Spratt JA, Snow ND, et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985; 71:994–1009.

    Article  PubMed  CAS  Google Scholar 

  19. Neely JR, Libermeister H. Effect of pressure development on oxygen consumption by an isolated rat heart. Am J Physiol 1967; 212:804–14.

    PubMed  CAS  Google Scholar 

  20. Fragata JI, Areias JC. Acute loads applied to the right ventricle: effect on left ventricular filling dynamics in the presence of an open pericardium. Pediatr Cardiol 1996; 17:77–81.

    Article  PubMed  CAS  Google Scholar 

  21. Schafer S, Schlack W, Kelm M, et al. Characterisation of left ventricular -dp/dt in the isolated guinea pig heart. Res Exp Med 1996; 196:261–73.

    CAS  Google Scholar 

  22. Hess OM, Bhargava V, Ross J Jr, et al. The role of the pericardium in interactions between the cardiac chambers. Am Heart J 1983; 106:1377–83.

    Article  PubMed  CAS  Google Scholar 

  23. Araki Y, Usui A, Kawaguchi O, et al. Pressure-volume relationship in isolated working heart with crystalloid perfusate in swine and imaging the valve motion. Eur J Cardiothorac Surg 2005; 28:435–42.

    Article  PubMed  Google Scholar 

  24. Hasegawa H, Araki Y, Usui A, et al. Mitral valve motion after performing an edge-to-edge repair in an isolated swine heart. J Thorac Cardiovasc Surg 2008; 136:590–6.

    Article  PubMed  Google Scholar 

  25. Bowditch HP. Über die Eigenthümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens ziegen. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft zu Leipzig. Mathematisch-Physische Classe 1871; 24:652–89.

    Google Scholar 

  26. Banville I, Chattipakorn N, Gray RA. Restitution dynamics during pacing and arrhythmias in isolated pig hearts. J Cardiovasc Electrophysiol 2004; 15:455–63.

    Article  PubMed  Google Scholar 

  27. Barold S, Lau C-P. Primary prevention of heart failure in cardiac pacing. Pacing Clin Electrophysiol 2006; 29:217–9.

    Article  PubMed  Google Scholar 

  28. Manolis A. The deleterious consequences of right ventricular apical pacing: time to seek alternate site pacing. Pacing Clin Electrophysiol 2006; 29:298–315.

    Article  PubMed  Google Scholar 

  29. Steinberg JS, Fischer A, Wang P, et al.; MADIT II Investigators. The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial II. J Cardiovasc Electrophysiol 2005; 16:359–65.

    Article  PubMed  Google Scholar 

  30. Schwaab B, Fröhlig G, Alexander C, et al. Influence of right ventricular stimulation site on left ventricular function in atrial synchronous ventricular pacing. J Am Coll Cardiol 1999; 33:317–23.

    Article  PubMed  CAS  Google Scholar 

  31. Lee MA, Dae MW, Langberg JJ, et al. Effects of long-term right ventricular apical pacing on left ventricular perfusion, innervation, function and histology. J Am Coll Cardiol 1994; 24:225–32.

    Article  PubMed  CAS  Google Scholar 

  32. Laske TG, Skadsberg ND, Hill AJ, et al. Excitation of the intrinsic conduction system through His and interventricular septal pacing. Pacing Clin Electrophysiol 2006; 29:397–405.

    Article  PubMed  Google Scholar 

  33. Rosenqvist M, Bergfeldt L, Haga Y, et al. The effect of ventricular activation sequence on cardiac performance during pacing. Pacing Clin Electrophysiol 1996; 19:1279–87.

    Article  PubMed  CAS  Google Scholar 

  34. De Cock CC, Giudici MC, Twisk JW. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing. Europace 2003; 5:275–8.

    Article  PubMed  CAS  Google Scholar 

  35. Skadsberg ND, Coles JA, Iaizzo PA. Electrophysiologic assessment of right ventricular cardiac pacing sites employing non-contact electrical map**. IJBEM 2007; 7:325–8.

    Google Scholar 

  36. Hasegawa H, Araki Y, Usui A, et al. Mitral valve motion after performing and edge-to-edge repair in an isolated swine heart. J Thorac Cardiovasc Surg 2008; 136:590–6.

    Article  PubMed  Google Scholar 

  37. Mihaljevic T, Ootaki Y, Robertson JO, et al. Beating heart cardioscopy: a platform for real-time, intracardiac imaging. Ann Thorac Surg 2008; 85:1061–6.

    Article  PubMed  Google Scholar 

  38. Iaizzo PA, Hill AJ, Laske TG. Cardiac device testing enhanced by simultaneous imaging modalities: the Visible Heart®, fluoroscopy, and echocardiography. Expert Rev Med Devices 2008; 5:51–8.

    Article  PubMed  Google Scholar 

  39. Hill AJ, Iaizzo PA. Comparative cardiac anatomy. In: Iaizzo PA, editor. The Handbook of Cardiac Anatomy, Physiology and Devices, 2nd edition. New York: Humana Press, 2009 (Chapter 6).

    Google Scholar 

  40. Demmy TL, Magovern GJ, Kao RL. Isolated biventricular working rat heart preparation. Ann Thorac Surg 1992; 54:915–20.

    Article  PubMed  CAS  Google Scholar 

  41. Klima U, Guerrero JL, Levine RA, et al. A new, biventricular working heterotopic heart transplant model: anatomic and physiologic considerations. Transplantation 1997; 64:215–22.

    Article  PubMed  CAS  Google Scholar 

  42. Igic R. The isolated perfused “working” rat heart: a new method. J Pharmacol Toxicol Methods 1996; 35:63–7.

    Article  PubMed  CAS  Google Scholar 

  43. Bove AA, Santamore WP. Ventricular interdependence. Prog Cardiovasc Dis 1981; 23:365–88.

    Article  PubMed  CAS  Google Scholar 

  44. Forty J, White DG, Wallwork J. A technique for perfusion of an isolated working heart to investigate hyperacute discordant xenograft rejection. J Thorac Cardiovasc Surg 1993; 106:308–16.

    PubMed  CAS  Google Scholar 

  45. Dunning J, Pierson RN, Braidley PC, et al. A comparison of the performance of pig hearts perfused with pig or human blood using an ex-vivo working heart model. Eur J Cardiothorac Surg 1994; 8:204–6.

    Article  PubMed  CAS  Google Scholar 

  46. Van Rijk-Zwikker GL, Schipperheyn JJ, Huysmans HA, et al. Influence of mitral valve prosthesis or rigid mitral ring on left ventricular pump function. Circulation 1989; 80:1–7.

    Article  Google Scholar 

  47. Kimose H, Ravkilde J, Helligso P, et al. Influence of pre-existing ischemia on recovery from chemical cardioplegia. A study on pig hearts in an isolated blood-perfused model. Scand J sssssThorac Cardiovasc Surg 1992; 26:23–31.

    Article  PubMed  CAS  Google Scholar 

  48. Sandhu R, Diaz RJ, Wilson GJ. Comparison of ischaemic preconditioning in blood perfused and buffer perfused isolated heart models. Cardiovasc Res 1993; 27:602–7.

    Article  PubMed  CAS  Google Scholar 

  49. Weng ZC, Nicolosi AC, Detwiler PW, et al. Effects of crystalloid, blood, and University of Wisconsin perfusates on weight, water content, and left ventricular compliance in an edema-prone, isolated porcine heart model. J Thorac Cardiovasc Surg 1992; 103:504–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Skadsberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Skadsberg, N.D., Hill, A.J., Iaizzo, P.A. (2010). Isolated Heart Models. In: Sigg, D., Iaizzo, P., **ao, YF., He, B. (eds) Cardiac Electrophysiology Methods and Models. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6658-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6658-2_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6657-5

  • Online ISBN: 978-1-4419-6658-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation