Nutritional-Induced Longitudinal Catch-Up Growth: A Focus on the Growth Plate, Growth-Related Genes, Autophagy, mTOR, and microRNAs

  • Chapter
  • First Online:
Handbook of Growth and Growth Monitoring in Health and Disease

Abstract

The association between nutrition and linear growth in children is well accepted: the growth of the human skeleton requires an adequate supply of many different nutritional factors and a close relationship exists between mechanisms regulating weight and those regulating linear growth. Children with malnutrition have significantly lower body weight and height than healthy subjects, as well as reduced levels of serum leptin, insulin, and insulin-like growth factor-I. Catch-up (CU) growth is a phase of accelerated growth following correction of a temporary growth-retarding endocrinological, nutritional, medical, or emotional disorder, which allowed children to resume their pre-illness growth curve. However, the mechanism that underlies the body’s “sensing” and “correction” of the growth delay as well as the exact mechanism whereby nutrition modulates cellular activity during bone elongation are still unclear. Several hormones, especially GH/IGF-I, leptin, and insulin, together with other as yet unidentified factors, affect local pathways that coordinate and couple chondrocyte proliferation and differentiation at the epiphyseal growth plate (EGP). Here we describe the effects of nutritional restriction and refeeding on the EGP, with a focus on growth-related genes. We also suggest the involvement of novel regulatory mechanisms in growth regulation including autophagy, mTOR, and microRNAs. A normal child is challenged with numerous episodes of growth-retarding causes (teeth eruption, minor infections, etc.), which are corrected without any long-standing effect. However, small alterations in the efficiency of the mechanism of the CU growth may lead eventually to significant differences in height. By understanding the mechanism of CU growth we may be able to design a better therapeutic regimen for children with growth disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CU:

Catch up

EGP:

Epiphyseal growth plate

IUGR:

Intrauterine growth retardation

GH:

Growth hormone

GHR:

Growth hormone receptor

GHRH:

Growth hormone-releasing hormone

HIF:

Hypoxia-inducible factor

HRE:

HIF-responsive element

IGF-I:

Insulin-like growth factor

IGF-IR:

Insulin-like growth factor receptor

Ihh:

Indian hedgehog

ISS:

Idiopathic short stature

miRNA:

microRNA

PEM:

Protein energy malnutrition

PTHrP:

Parathyroid hormone-related peptide

Rap:

Rapamycin

References

  • Accorsi PA, Munno A, et al. Role of leptin on growth hormone and prolactin secretion by bovine pituitary explants. J Dairy Sci. 2007;90:1683–91.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Garcia O, Carbajo-Perez E, Garcia E, Gil H, Molinos I, Rodriguez J, Ordonez FA, Santos F. Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol. 2007;22:954–61.

    Article  PubMed  Google Scholar 

  • Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75:73–82.

    PubMed  CAS  Google Scholar 

  • Baltimore D, Boldin MP, et al. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9:839–45.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister FA, Engelsberger I, Schulze A. Pancreatic agenesis as cause for neonatal diabetes mellitus. Klin Padiatr. 2005;217:76–81.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Eliezer M, Phillip M, Gat-Yablonski G. Leptin regulates chondrogenic differentiation in ATDC5 cell-line through JAK/STAT and MAPK pathways. Endocrine. 2007;32:235–44.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Kim SY, et al. Dicer is essential for mouse development. Nat Genet. 2003;35:215–7.

    Article  PubMed  CAS  Google Scholar 

  • Boersma B, Wit JM. Catch-up growth. Endocr Rev. 1997;18:646–61.

    Article  PubMed  CAS  Google Scholar 

  • Buyukgebiz B, Ozturk Y, Yilmaz S, Arslan N. Serum leptin concentrations in children with mild protein-energy malnutrition and catch-up growth. Pediatr Int. 2004;46:534–8.

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.

    Article  PubMed  CAS  Google Scholar 

  • Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401.

    Article  PubMed  CAS  Google Scholar 

  • Cohen MM, Jr. Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. Am J Med Genet. 2006;A 140:515–24.

    Article  Google Scholar 

  • Coupé B, Grit I, Darmaun D, Parnet P. The timing of “catch-up growth” affects metabolism and appetite regulation in male rats born with intra-uterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2009;297:R813–24.

    Article  PubMed  Google Scholar 

  • Cruickshank J, Grossman DI, Peng RK, Famula TR, Oberbauer AM. Spatial distribution of growth hormone receptor, insulin-like growth factor-I receptor and apoptotic chondrocytes during growth plate development. J Endocrinol. 2005;184:543–53.

    Article  PubMed  CAS  Google Scholar 

  • Cuellar TL, McManus MT. MicroRNAs and endocrine biology. J Endocrinol. 2005;187:327–32.

    Article  PubMed  CAS  Google Scholar 

  • Esau C, Kang X, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004;279:52361–5.

    Article  PubMed  CAS  Google Scholar 

  • Even-Zohar N, Jacob J, Amariglio N, Rechavi G, Potievsky O, Phillip M, Gat-Yablonski G. Nutrition-induced catch-up growth increases hypoxia inducible factor 1alpha RNA levels in the growth plate. Bone. 2008;42:505–15.

    Article  PubMed  CAS  Google Scholar 

  • Farnum CE, Lee AO, O’Hara K, Wilsman NJ. Effect of short-term fasting on bone elongation rates: an analysis of catch-up growth in young male rats. Pediatr Res. 2003;53:33–41.

    PubMed  Google Scholar 

  • Fliesen T, Maiter D, Gerard G, Underwood LE, Maes M, Ketelslegers JM. Reduction of serum insulin-like growth factor-I by dietary protein restriction is age dependent. Pediatr Res. 1989;26:415–9.

    Article  PubMed  CAS  Google Scholar 

  • Frederich RC, Lollmann B, et al. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest. 1995;96:1658–63.

    CAS  Google Scholar 

  • Gafni RI, Weise M, Robrecht DT, Meyers JL, Barnes KM, De-Levi S, Baron J. Catch-up growth is associated with delayed senescence of the growth plate in rabbits. Pediatr Res. 2001;50:618–23.

    Article  PubMed  CAS  Google Scholar 

  • Gat-Yablonski G, Phillip M. Leptin and regulation of linear growth. Curr Opin Clin Nutr Metab Care. 2008;11:303–8.

    Article  PubMed  CAS  Google Scholar 

  • Gat-Yablonski G, Ben-Ari T, Shtaif B, Potievsky O, Moran O, Eshet R, Maor G, Segev Y, Phillip M. Leptin reverses the inhibitory effect of caloric restriction on longitudinal growth. Endocrinology. 2004;145:343–50.

    Article  PubMed  CAS  Google Scholar 

  • Gat-Yablonski G, Shtaif B, Phillip M. Leptin stimulates parathyroid hormone related peptide expression in the endochondral growth plate. J Pediatr Endocrinol Metab. 2007;20:1215–22.

    Article  PubMed  CAS  Google Scholar 

  • Gat-Yablonski G, Shtaif B, Abraham E, Phillip M. Nutrition-induced catch-up growth at the growth plate. J Pediatr Endocrinol Metab. 2008;21:879–93.

    Article  PubMed  CAS  Google Scholar 

  • Gat-Yablonski G, Gavan-Yackobovitz M, Phillip M. Nutrition and Bone Growth in Pediatrics. Endocrinol Metab Clin North Am. 2009;38:565–86.

    Article  PubMed  CAS  Google Scholar 

  • Grisaru-Granovsky S, Samueloff A, Elstein D. The role of leptin in fetal growth: a short review from conception to delivery. Eur J Obstet Gynecol Reprod Biol. 2008;136:146–50.

    Article  PubMed  CAS  Google Scholar 

  • Han ES, Hickey M. Microarray evaluation of dietary restriction. J Nutr. 2005;135:1343–6.

    PubMed  CAS  Google Scholar 

  • Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA. 2005;102:10898–903.

    Article  PubMed  CAS  Google Scholar 

  • He Z, Sontheimer EJ. “siRNAs and miRNAs”: a meeting report on RNA silencing. RNA. 2004;10:1165–73.

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs C, Colli M, Yanovski JA, Laue L, Gerstl NA, Kramer AD, Uyeda JA, Baron J. Effects of fasting on the growth plate: systemic and local mechanisms. Endocrinology. 1997;138:5359–65.

    Article  PubMed  CAS  Google Scholar 

  • Hermanussen M, Rol de Lama MA, Romero AP, Ruiz CA, Burmeister J, Tresguerres JA. Differential catch-up in body weight and bone growth after short-term starvation in rats. Growth Regul. 1996;6:230–7.

    PubMed  CAS  Google Scholar 

  • Hoggard N, Mercer JG, et al. Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem Biophys Res Commun. 1997;232:383–7.

    Google Scholar 

  • Hunziker EB, Wagner J, et al. Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J Clin Invest. 1994;93:1078–86.

    Google Scholar 

  • Iwaniec UT, Boghossian S, et al. Central leptin gene therapy corrects skeletal abnormalities in leptin-deficient ob/ob mice. Peptides. 2007;28:1012–9.

    Google Scholar 

  • ** L, Burguera BG, et al. Leptin and leptin receptor expression in normal and neoplastic human pituitary: evidence of a regulatory role for leptin on pituitary cell proliferation. J Clin Endocrinol Metab. 1999;84:2903–11.

    Google Scholar 

  • Kappeler L, De Magalhaes Filho C, Leneuve P, Xu J, Brunel N, Chatziantoniou C, Le Bouc Y, Holzenberger M. Early postnatal nutrition determines somatotropic function in mice. Endocrinology. 2009;150:314–23.

    Article  PubMed  CAS  Google Scholar 

  • Kay’s SK, Hindmarsh PC. Catch-up growth: an overview. Pediatr Endocrinol Rev. 2006;3:365–78.

    PubMed  Google Scholar 

  • Kim J, Inoue K, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317:1220–24.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Lu J, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA. 2008;105:1949–54.

    Article  PubMed  CAS  Google Scholar 

  • Kume K, Satomura K, Nishisho S, Kitaoka E, Yamanouchi K, Tobiume S, Nagayama M. Potential role of leptin in endochondral ossification. J Histochem Cytochem. 2002;50:159–69.

    Article  PubMed  CAS  Google Scholar 

  • LaPaglia N, Steiner J, Kirsteins L, Emanuele M, Emanuele N. Leptin alters the response of the growth hormone releasing factor- growth hormone – insulin-like growth factor-I axis to fasting. J Endocrinol. 1998;159:79–83.

    Article  PubMed  CAS  Google Scholar 

  • Lowe WL Jr, Adamo M, Werner H, Roberts CT Jr, LeRoith D. Regulation by fasting of rat insulin-like growth factor I and its receptor. Effects on gene expression and binding. J Clin Invest. 1989;84:619–26.

    Article  PubMed  CAS  Google Scholar 

  • Luque RM, Huang ZH, Shah B, Mazzone T, Kineman RD. Effects of leptin replacement on hypothalamic-pituitary growth hormone axis function and circulating ghrelin levels in ob/ob mice. Am J Physiol Endocrinol Metab. 2007;292:E891–9.

    Article  PubMed  CAS  Google Scholar 

  • Maor G, Rochwerger M, Segev Y, Phillip M. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res. 2002;17:1034–43.

    Article  PubMed  CAS  Google Scholar 

  • Maqsood AR, Trueman JA, Whatmore AJ, Westwood M, Price DA, Hall CM, Clayton PE. The relationship between nocturnal urinary leptin and gonadotrophins as children progress towards puberty. Horm Res. 2007;68:225–30.

    Article  PubMed  CAS  Google Scholar 

  • Martin A, David V, Malaval L, Lafage-Proust MH, Vico L, Thomas T. Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology. 2007;148:3419–25.

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A. Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol. 2002;16:2657–66.

    Article  PubMed  CAS  Google Scholar 

  • Mosier HD, Jr, Jansons RA. Growth hormone during catch-up growth and failure of catch-up growth in rats. Endocrinology. 1976;98:214–9.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima R, Inada H, Koike T, Yamano T. Effects of leptin to cultured growth plate chondrocytes. Horm Res. 2003;60:91–8.

    Article  PubMed  CAS  Google Scholar 

  • Ong K, Kratzsch J, Kiess W, Dunger D. Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. J Clin Endocrinol Metab. 2002;87:1041–4.

    Article  PubMed  CAS  Google Scholar 

  • Papagiannakopoulos T, Kosik KS. MicroRNAs: regulators of oncogenesis and stemness. BMC Med. 2008;6:15.

    Article  PubMed  Google Scholar 

  • Pauley KM, Cha S, et al. MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun. 2009;32:189–94.

    Google Scholar 

  • Phillip M, Moran O, et al. Growth without growth hormone. J Pediatr Endocrinol Metab. 2002;15(Suppl 5):1267–72.

    Google Scholar 

  • Poy MN, Eliasson L, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.

    Google Scholar 

  • Prader A, Tanner JM, von HG. Catch-up growth following illness or starvation. An example of developmental canalization in man. J Pediatr. 1963;62:646–59.

    Article  PubMed  CAS  Google Scholar 

  • Robson H, Siebler T, Shalet SM, Williams GR. Interactions between GH, IGF-I, glucocorticoids, and thyroid hormones during skeletal growth. Pediatr Res. 2002;52:137–47.

    PubMed  CAS  Google Scholar 

  • Sanchez CP, He YZ. Bone growth during rapamycin therapy in young rats. BMC Pediatr. 2009;9:3.

    Article  PubMed  Google Scholar 

  • Schickel R, Boyerinas B, et al. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27:5959–74.

    Article  PubMed  CAS  Google Scholar 

  • Schipani E. Hypoxia and HIF-1 alpha in chondrogenesis. Semin Cell Dev Biol. 2005;16:539–46.

    Article  PubMed  CAS  Google Scholar 

  • Srinivas V, Bohensky J, Shapiro IM. Autophagy: a new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase. Cells Tissues Organs. 2009;189:88–92.

    Article  PubMed  CAS  Google Scholar 

  • Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92:73–8.

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga C, Yoshino K, Yonezawa K. mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun. 2004;313:443–6.

    Article  PubMed  CAS  Google Scholar 

  • Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580:4214–7.

    Article  PubMed  CAS  Google Scholar 

  • Underwood LE, Clemmons DR, Maes M, D'Ercole AJ, Ketelslegers JM. Regulation of somatomedin-C/insulin-like growth factor I by nutrients. Horm Res. 1986;24:166–76.

    Article  PubMed  CAS  Google Scholar 

  • Vega RB, Matsuda K, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004;119:555–6.

    Article  PubMed  CAS  Google Scholar 

  • Walenkamp MJ, Wit JM. Single gene mutations causing SGA. Best Pract Res Clin Endocrinol Metab. 2008;22:433–46.

    Article  PubMed  CAS  Google Scholar 

  • Wienholds E, Kloosterman WP, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309:310–1.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Jima DD, et al. Patterns of microRNA expression characterize stages of human B-cell differentiation. Blood. 2009;113:4586–94.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Gloria Ginzach for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Phillip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gat-Yablonski, G., Phillip, M. (2012). Nutritional-Induced Longitudinal Catch-Up Growth: A Focus on the Growth Plate, Growth-Related Genes, Autophagy, mTOR, and microRNAs. In: Preedy, V. (eds) Handbook of Growth and Growth Monitoring in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1795-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1795-9_61

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1794-2

  • Online ISBN: 978-1-4419-1795-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation