Postnatal Hippocampal Growth in Health and Prematurity: Modulation and Implications

  • Chapter
  • First Online:
Handbook of Growth and Growth Monitoring in Health and Disease

Abstract

The hippocampus is part of the limbic system of the brain, involved with memory and learning functions. The hippocampus is vulnerable to neurological insults during development and is therefore particularly susceptible to damage in preterm (PT) infants. At birth, the hippocampus is about 1.5 cm3 in size and grows up to an average size of about 3 cm3 in the average adult. The right side is larger than the left. The hippocampus grows most rapidly between one and two postnatal months, with continued rapid growth until 2 years of age. The hippocampus resembles adult-like morphology by about 5 years of age, but organization and myelination continue into adolescence. Growth of the hippocampus is mediated by increasing numbers of neurons, dendritic arborization and growth, as well as myelination of axons. Maturation of memory and learning function parallels hippocampal growth and development. Premature birth often results in a smaller hippocampal size, which persists into childhood, adolescence and adulthood. Potential causes for smaller hippocampi in PT populations include stress and postnatal glucocorticoid exposure as well as injury to the white matter. Hippocampal damage may form the basis for learning and memory deficits commonly associated with PT birth. Abnormalities of hippocampal growth and development have also been associated with attention deficit hyperactivity disorder (ADHD), Alzheimer’s disease, epilepsy, schizophrenia, bipolar disorder and depression, and therefore early alterations to hippocampal growth may result in a predisposition for other disorders. Hippocampal growth and development is most often studied in vivo using magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADHD:

Attention deficit hyperactivity disorder

BW:

Birth weight

CA:

Cornu ammonis

FT:

Full-term

GA:

Gestational age

HPA:

Hypothalamic-pituitary-adrenal

IQ:

Intelligence quotient

MRI:

Magnetic resonance imaging

NMDA:

N-methyl-d-aspartic acid

PT:

Preterm

References

  • Aadland J, Beatty WW, Maki RH. Spatial memory of children and adults assessed in the radial maze. Dev Psychobiol 1985;18:163–72.

    Article  PubMed  CAS  Google Scholar 

  • Abernethy LJ, Klafkowski G, Foulder-Hughes L, Cooke RWI. Magnetic resonance imaging and T2 relaxometry of cerebral white matter and hippocampus in children born preterm. Pediatric Research 2003;54:868–74.

    Article  PubMed  Google Scholar 

  • Abernethy LJ, Palaniappan M, Cooke RW. Quantitative magnetic resonance imaging of the brain in survivors of very low birth weight. Arch Dis Child 2002;87:279–83.

    Article  PubMed  CAS  Google Scholar 

  • Abraham H, Tornoczky T, Kosztolanyi G, Seress L. Cell proliferation correlates with the postconceptual and not with the postnatal age in the hippocampal dentate gyrus, temporal neocortex and cerebellar cortex of preterm infants. Early Human Development 2004;78:29–43.

    Article  PubMed  Google Scholar 

  • Anderson P, Doyle LW. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 2003;289:3264–72.

    Article  PubMed  Google Scholar 

  • Arnold SE, Trojanowski JQ. Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 1996;367:274–92.

    Article  PubMed  CAS  Google Scholar 

  • Bachevalier J, Beauregard M. Maturation of medial temporal lobe memory functions in rodents, monkeys, and humans. Hippocampus 1993;3 Spec No: 191–201.

    PubMed  Google Scholar 

  • Barkovich AJ. Magnetic resonance imaging: role in the understanding of cerebral malformations. Brain Dev 2002;24:2–12.

    Article  PubMed  Google Scholar 

  • Beauchamp MH, Thompson DK, Howard K, Doyle LW, Egan GF, Inder TE, et al. Preterm infant hippocampal volumes correlate with later working memory deficits. Brain 2008;131:2986–94.

    Article  PubMed  Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994;51:477–84.

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi N, Kinay D, Andermann F, Antel S, Bernasconi A. Analysis of shape and positioning of the hippocampal formation: an MRI study in patients with partial epilepsy and healthy controls. Brain 2005;128:2442–52.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JHY, Gore JC, et al. Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry 2003;60:1201–8.

    Article  PubMed  Google Scholar 

  • Bobinski M, de Leon MJ, Convit A, De Santi S, Wegiel J, Tarshish CY, et al. MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet 1999;353:38–40.

    Article  PubMed  CAS  Google Scholar 

  • Botting N, Powls A, Cooke RW, Marlow N. Cognitive and educational outcome of very-low-birthweight children in early adolescence. Dev Med Child Neurol 1998;40:652–60.

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Finke C, Ostendorf F, Lehmann TN, Hoffmann KT, Ploner CJ. Reorganization of associative memory in humans with long-standing hippocampal damage. Brain 2008;131:2742–50.

    Article  PubMed  Google Scholar 

  • Bremner JD. Stress and brain atrophy. CNS Neurol Disord Drug Targets 2006;5:503–12.

    Article  PubMed  Google Scholar 

  • Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. American Journal of Psychiatry 1995;152:973–81.

    PubMed  CAS  Google Scholar 

  • Burgess N, Jeffery KJ, O’Keefe J. Integrating hippocampal and parietal functions: a spatial point of view. In: Burgess N, Jeffery KJ, O’Keefe J, editors. The hippocampal and parietal foundations of spatial cognition. New York: Oxford University Press; 1999. p. 1–29.

    Google Scholar 

  • Conti AC, Raghupathi R, Trojanowski JQ, McIntosh TK. Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J Neurosci 1998;18:5663–72.

    PubMed  CAS  Google Scholar 

  • Cook MJ, Fish DR, Shorvon SD, Straughan K, Stevens JM. Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain 1992;115(Pt 4):1001–15.

    Article  PubMed  Google Scholar 

  • Danzer SC. Postnatal and adult neurogenesis in the development of human disease. Neuroscientist 2008;14:446–58.

    Article  PubMed  Google Scholar 

  • Dobbing J, Sands J. Quantitative growth and development of human brain. Archives of Disease in Childhood 1973;48:757–67.

    Article  PubMed  CAS  Google Scholar 

  • Druzin ML. Prematurity and complications of labor and delivery. In: Stevenson DK, Sunshine P, editors. Fetal and Neonatal Brain Injury: Mechanisms, management, and the risks of practice. 2nd ed. New York: Oxford University Press; 1997. p. 92–7.

    Google Scholar 

  • Duvernoy HM. The human Hippocampus. An atlas of applied anatomy. Munchen: J.F Bergmann Verlag; 1988.

    Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313–7.

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989;244:798–800.

    Article  PubMed  CAS  Google Scholar 

  • Fearon P, O’Connell P, Frangou S, Aquino P, Nosarti C, Allin M, et al. Brain volumes in adult survivors of very low birth weight: a sibling-controlled study. Pediatrics 2004;114:367–71.

    Article  PubMed  Google Scholar 

  • Fitzgerald M. Neuroanatomy: Basic and Clinical. 3rd ed. London: W.B. Saunders Company Ltd; 1996.

    Google Scholar 

  • Fuller PW, Guthrie RD, Alvord EC, Jr. A proposed neuropathological basis for learning disabilities in children born prematurely. Dev Med Child Neurol 1983;25:214–31.

    Article  PubMed  CAS  Google Scholar 

  • Geuze E, Vermetten E, Bremner JD. MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatr 2005;10:160–84.

    Article  CAS  Google Scholar 

  • Giedd JN, Vaituzis AC, Hamburger SD, Lange N, Rajapakse JC, Kaysen D, et al. Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. J Comp Neurol 1996;366:223–30.

    Article  PubMed  CAS  Google Scholar 

  • Gimenez M, Junque C, Narberhaus A, Caldu X, Salgado-Pineda P, Bargallo N, et al. Hippocampal gray matter reduction associates with memory deficits in adolescents with history of prematurity. Neuroimage 2004;23:869–77.

    Article  PubMed  Google Scholar 

  • Gimenez M, Soria-Pastor S, Junque C, Caldu X, Narberhaus A, Botet F, et al. Proton magnetic resonance spectroscopy reveals medial temporal metabolic abnormalities in adolescents with history of preterm birth. Pediatr Res 2008;64:572–7.

    Article  PubMed  CAS  Google Scholar 

  • Gogtay N, Nugent TF, 3rd, Herman DH, Ordonez A, Greenstein D, Hayashi KM, et al. Dynamic map** of normal human hippocampal development. Hippocampus 2006;16:664–72.

    Article  PubMed  Google Scholar 

  • Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry 1999;46:1472–9.

    Article  PubMed  CAS  Google Scholar 

  • Goyen TA, Lui K, Woods R. Visual-motor, visual-perceptual, and fine motor outcomes in very-low-birthweight children at 5 years. Dev Med Child Neurol 1998;40:76–81.

    Article  PubMed  CAS  Google Scholar 

  • Hack M. Young adult outcomes of very-low-birth-weight children. Semin Fetal Neonatal Med 2006;11:127–37.

    Article  PubMed  Google Scholar 

  • Hevner RF, Kinney HC. Reciprocal entorhinal-hippocampal connections established by human fetal midgestation. J Comp Neurol 1996;372:384–94.

    Article  PubMed  CAS  Google Scholar 

  • Hintz SR, Kendrick DE, Vohr BR, Kenneth Poole W, Higgins RD, For The Nichd Neonatal Research N. Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr 2006;95:1239–48.

    Article  PubMed  Google Scholar 

  • Holsti L, Grunau RV, Whitfield MF. Developmental coordination disorder in extremely low birth weight children at nine years. J Dev Behav Pediatr 2002;23:9–15.

    Article  PubMed  Google Scholar 

  • Honeycutt NA, Smith CD. Hippocampal volume measurements using magnetic resonance imaging in normal young adults. J Neuroimaging 1995;5:95–100.

    PubMed  CAS  Google Scholar 

  • Humphrey T. The development of the human hippocampal fissure. J Anat 1967;101:655–76.

    PubMed  CAS  Google Scholar 

  • Insausti R, Amaral DG. Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. J Comp Neurol 2008;509:608–41.

    Article  PubMed  Google Scholar 

  • Insausti R, Cebada-Sanchez S, Marcos P. Postnatal Development of the Human Hippocampal Formation. Heidelberg: Springer; 2010.

    Book  Google Scholar 

  • Isaacs EB, Edmonds CJ, Chong WK, Lucas A, Morley R, Gadian DG. Brain morphometry and IQ measurements in preterm children. Brain 2004;127:2595–607.

    Article  PubMed  CAS  Google Scholar 

  • Isaacs EB, Lucas A, Chong WK, Wood SJ, Johnson CL, Marshall C, et al. Hippocampal volume and everyday memory in children of very low birth weight. Pediatric Research 2000;47:713–20.

    Article  PubMed  CAS  Google Scholar 

  • Isaacs EB, Vargha-Khadem F, Watkins KE, Lucas A, Mishkin M, Gadian DG. Developmental amnesia and its relationship to degree of hippocampal atrophy. Proc Natl Acad Sci USA 2003;100:13060–3.

    Article  PubMed  CAS  Google Scholar 

  • Jack C, Jr, Bentley M, Twomey C, Zinsmeister A. MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies. Radiology 1990;176:205–9.

    PubMed  Google Scholar 

  • Kier EL, Kim JH, Fulbright RK, Bronen RA. Embryology of the human fetal hippocampus: MR imaging, anatomy, and histology. AJNR 1997;18:525–32.

    CAS  Google Scholar 

  • Krageloh-Mann I. Imaging of early brain injury and cortical plasticity. Exp Neurol 2004;190:S84–S90.

    Article  PubMed  Google Scholar 

  • Kretschmann HJ, Kammradt G, Krauthausen I, Sauer B, Wingert F. Growth of the hippocampal formation in man. Bibl Anat 1986:27–52.

    Google Scholar 

  • Kuruba R, Shetty AK. Could hippocampal neurogenesis be a future drug target for treating temporal lobe epilepsy? CNS Neurol Disord Drug Targets 2007;6:342–57.

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Tien RD, Lewis DV, Friedman AH, Felsberg GJ, Crain B, et al. Fast spin-echo, magnetic resonance imaging-measured hippocampal volume: correlation with neuronal density in anterior temporal lobectomy patients. Epilepsia 1995;36:899–904.

    Article  PubMed  CAS  Google Scholar 

  • Lehericy S, Dormont D, Semah F, Clemenceau S, Granat O, Marsault C, et al. Developmental abnormalities of the medial temporal lobe in patients with temporal lobe epilepsy. AJNR 1995;16:617–26.

    PubMed  CAS  Google Scholar 

  • Lin YJ, Yeh TF, Hsieh WS, Chi YC, Lin HC, Lin CH. Prevention of chronic lung disease in preterm infants by early postnatal dexamethasone therapy. Pediatr Pulmonol 1999;27:21–6.

    Article  PubMed  CAS  Google Scholar 

  • Lodygensky GA, Rademaker K, Zimine S, Gex-Fabry M, Lieftink AF, Lazeyras F, et al. Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics 2005;116:1–7.

    Article  PubMed  Google Scholar 

  • Luoma L, Herrgard E, Martikainen A, Ahonen T. Speech and language development of children born at < or = 32 weeks’ gestation: a 5-year prospective follow-up study. Dev Med Child Neurol 1998;40:380–7.

    Article  PubMed  CAS  Google Scholar 

  • Maneru C, Serra-Grabulosa JM, Junque C, Salgado-Pineda P, Bargallo N, Olondo M, et al. Residual hippocampal atrophy in asphyxiated term neonates. Journal of Neuroimaging 2003;13:68–74.

    Article  PubMed  Google Scholar 

  • Matsumoto H, Takei N, Saito F, Kachi K, Mori N. The association between obstetric complications and childhood-onset schizophrenia: a replication study. Psychol Med 2001;31:907–14.

    Article  PubMed  CAS  Google Scholar 

  • Mohedano-Moriano A, Martinez-Marcos A, Pro-Sistiaga P, Blaizot X, Arroyo-Jimenez MM, Marcos P, et al. Convergence of unimodal and polymodal sensory input to the entorhinal cortex in the fascicularis monkey. Neuroscience 2008;151:255–71.

    Article  PubMed  CAS  Google Scholar 

  • Murphy BP, Inder TE, Huppi PS, Warfield S, Zientara GP, Kikinis R, et al. Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 2001;107:217–21.

    Article  PubMed  CAS  Google Scholar 

  • Naidich TP, Daniels DL, Haughton VM, Williams A, Peck P, Pojunas K, et al. The hippocampal formation and related structures of the limbic lobe: Anatomic – Magnetic Resonance correlation. In: Gouaze A, Salamon G, editors. Brain Anatomy and Magnetic Resonance Imaging. Berlin: Springer-Verlag; 1988. p. 32–64.

    Chapter  Google Scholar 

  • Nass R, Ross G. Complication of the perinatum: the outcome of prematurity. In: Frank Y, editor. Pediatric behavioral neurology. Boca Raton: CRC press, Inc; 1996. p. 87–111.

    Google Scholar 

  • Neufang S, Specht K, Hausmann M, Gunturkun O, Herpertz-Dahlmann B, Fink GR, et al. Sex differences and the impact of steroid hormones on the develo** human brain. Cereb Cortex 2009;19:464–73.

    Article  PubMed  Google Scholar 

  • Nolte J. The Human Brain: An introduction to its functional anatomy. 3rd ed. St Louis: Mosby-Year Book, Inc.; 1993.

    Google Scholar 

  • Nosarti C, Al-Asady MHS, Frangou S, Stewart AL, Rifkin L, Murray RM. Adolescents who were born very preterm have decreased brain volumes. Brain 2002;125:1616–23.

    Article  PubMed  Google Scholar 

  • Obenaus A, Yong-Hing CJ, Tong KA, Sarty GE. A reliable method for measurement and normalization of pediatric hippocampal volumes. Pediatric Research 2001;50:124–32.

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Kato T, Iwai K, Iwasaki N, Ohto T, Matsui A. Evaluation of hippocampal infolding using magnetic resonance imaging. Neuroreport 2003;14:1405–9.

    PubMed  Google Scholar 

  • Overman WH. Performance on traditional matching to sample, non-matching to sample, and object discrimination tasks by 12- to 32-month-old children. A developmental progression. Ann N Y Acad Sci 1990;608:365–85; discussion 85–93.

    Article  CAS  Google Scholar 

  • Paizanis E, Kelai S, Renoir T, Hamon M, Lanfumey L. Life-long hippocampal neurogenesis: environmental, pharmacological and neurochemical modulations. Neurochem Res 2007;32:1762–71.

    Article  PubMed  CAS  Google Scholar 

  • Perlman JM. Neurobehavioral deficits in premature graduates of intensive care – Potential medical and neonatal environmental risk factors. Pediatrics 2001;108:1339–48.

    Article  PubMed  CAS  Google Scholar 

  • Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 2000;284:1939–47.

    Article  PubMed  CAS  Google Scholar 

  • Pfluger T, Weil S, Weis S, Vollmar C, Heiss D, Egger J, et al. Normative volumetric data of the develo** hippocampus in children based on magnetic resonance imaging. Epilepsia 1999;40:414–23.

    Article  PubMed  CAS  Google Scholar 

  • Pozniak CD, Pleasure SJ. Genetic control of hippocampal neurogenesis. Genome Biol 2006;7:207.

    Article  PubMed  CAS  Google Scholar 

  • Pullela R, Raber J, Pfankuch T, Ferriero DM, Claus CP, Koh SE, et al. Traumatic injury to the immature brain results in progressive neuronal loss, hyperactivity and delayed cognitive impairments. Dev Neurosci 2006;28:396–409.

    Article  PubMed  CAS  Google Scholar 

  • Rose SA, Feldman JF. Memory and processing speed in preterm children at eleven years: a comparison with full-terms. Child Dev 1996;67:2005–21.

    Article  PubMed  CAS  Google Scholar 

  • Rose SA, Feldman JF, Jankowski JJ. Recall memory in the first three years of life: a longitudinal study of preterm and term children. Dev Med Child Neurol 2005;47:653–9.

    Article  PubMed  Google Scholar 

  • Saitoh O, Karns CM, Courchesne E. Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 2001;124:1317–24.

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000;57:925–35.

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 1990;10:2897–902.

    PubMed  CAS  Google Scholar 

  • Sato N, Hatakeyama S, Shimizu N, Hikima A, Aoki J, Endo K. MR evaluation of the hippocampus in patients with congenital malformations of the brain. AJNR 2001;22:389–93.

    PubMed  CAS  Google Scholar 

  • Schmidt-Kastner R, Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 1991;40:599–636.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HD, Duman RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 2007;18:391–418.

    Article  PubMed  CAS  Google Scholar 

  • Schneider JF, Vergesslich K. Maturation of the limbic system revealed by MR FLAIR imaging. Pediatr Radiol 2007;37:351–5.

    Article  PubMed  Google Scholar 

  • Schuff N, Woerner N, Boreta L, Kornfield T, Shaw LM, Trojanowski JQ, et al. MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 2009;132:1067–77.

    Article  PubMed  CAS  Google Scholar 

  • Schumann CM, Hamstra J, Goodlin-Jones BL, Kwon H, Reiss AL, Amaral DG. Hippocampal size positively correlates with verbal IQ in male children. Hippocampus 2007;17:486–93.

    Article  PubMed  Google Scholar 

  • Seress L. Morphological changes of the human hippocampal formation from midgestation to early childhood. In: Nelson C, Luciana M, editors. Handbook of Developmental Cognitive Neuroscience. Cambridge, MA: Massachusetts Institute of Technology Press; 2001. p. 45–58.

    Google Scholar 

  • Sluzenski J, Newcombe NS, Satlow E. Knowing where things are in the second year of life: implications for hippocampal development. J Cogn Neurosci 2004;16:1443–51.

    Article  PubMed  Google Scholar 

  • Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci 2004;27:279–306.

    Article  PubMed  CAS  Google Scholar 

  • Stark AR, Carlo WA, Tyson JE, Papile LA, Wright LL, Shankaran S, et al. Adverse effects of early dexamethasone in extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med 2001;344:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Hagino H, Nohara S, Zhou SY, Kawasaki Y, Takahashi T, et al. Male-specific volume expansion of the human hippocampus during adolescence. Cerebral Cortex 2005;15:187–93.

    Article  PubMed  Google Scholar 

  • Taylor HG, Klein N, Schatschneider C, Hack M. Predictors of early school age outcomes in very low birth weight children. J Dev Behav Pediatr 1998;19:235–43.

    Article  PubMed  CAS  Google Scholar 

  • Taylor HG, Minich NM, Klein N, Hack M. Longitudinal outcomes of very low birth weight: neuropsychological findings. J Int Neuropsychol Soc 2004;10:149–63.

    PubMed  Google Scholar 

  • Thompson DK, Wood SJ, Doyle LW, Warfield SK, Egan GF, Inder TE. MR-determined hippocampal asymmetry in full-term and preterm neonates. Hippocampus 2009;19:118–23.

    Article  PubMed  Google Scholar 

  • Thompson DK, Wood SJ, Doyle LW, Warfield SK, Lodygensky GA, Anderson PJ, et al. Neonate hippocampal volumes: prematurity, perinatal predictors, and 2-year outcome. Ann Neurol 2008;63:642–51.

    Article  PubMed  Google Scholar 

  • Utsunomiya H, Takano K, Okazaki M, Mitsudome A. Development of the temporal lobe in infants and children: analysis by MR-based volumetry. Am J Neuroradiol 1999;20:717–23.

    PubMed  CAS  Google Scholar 

  • Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 1997;277:376–80.

    Article  PubMed  CAS  Google Scholar 

  • Velakoulis D, Pantelis C, McGorry PD, Dudgeon P, Brewer W, Cook M, et al. Hippocampal volume in first-episode psychoses and chronic schizophrenia: a high-resolution magnetic resonance imaging study. Arch Gen Psychiatry 1999;56:133–41.

    Article  PubMed  CAS  Google Scholar 

  • Vicari S, Caravale B, Carlesimo GA, Casadei AM, Allemand F. Spatial working memory deficits in children at ages 3–4 who were low birth weight, preterm infants. Neuropsychology 2004;18:673–8.

    Article  PubMed  Google Scholar 

  • Villarreal G, Hamilton DA, Petropoulos H, Driscoll I, Rowland LM, Griego JA, et al. Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biol Psychiatry 2002;52:119–25.

    Article  PubMed  Google Scholar 

  • Vythilingam M, Heim C, Newport J, Miller AH, Anderson E, Bronen R, et al. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am J Psychiatry 2002;159:2072–80.

    Article  PubMed  Google Scholar 

  • Watson C, Jack CR, Jr., Cendes F. Volumetric magnetic resonance imaging. Clinical applications and contributions to the understanding of temporal lobe epilepsy. Arch Neurol 1997;54:1521–31.

    Article  PubMed  CAS  Google Scholar 

  • Weis S, Haug H, Holoubek B, Orun H. The cerebral dominances: quantitative morphology of the human cerebral cortex. Int J Neurosci 1989;47:165–8.

    Article  PubMed  CAS  Google Scholar 

  • Woodroofe MN, Sarna GS, Wadhwa M, Hayes GM, Loughlin AJ, Tinker A, et al. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Neuroimmunol 1991;33:227–36.

    Article  PubMed  CAS  Google Scholar 

  • Wu WC, Huang CC, Chung HW, Liou M, Hsueh CJ, Lee CS, et al. Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: evaluations with MR volumetry and proton MR spectroscopy. AJNR 2005;26:1270–5.

    PubMed  Google Scholar 

  • Zaidel DW. The case for a relationship between human memory, hippocampus and corpus callosum. Biol Res 1995;28:51–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Victorian Infant Brain Study (VIBeS) team at the Murdoch Childrens Research Institute led by Peter Anderson, Lex Doyle and Rod Hunt and also the Howard Florey Institute’s Neuroimaging group led by Gary Egan. I would also like to acknowledge the Washington University Neurodevelopmental Research (WUNDER) team in St Louis led by Terrie Inder, as well as Stephen Wood from the Melbourne Neuropsychiatry Centre, and finally Simon Warfield from Harvard University in Boston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanne K. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thompson, D.K. (2012). Postnatal Hippocampal Growth in Health and Prematurity: Modulation and Implications. In: Preedy, V. (eds) Handbook of Growth and Growth Monitoring in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1795-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1795-9_38

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1794-2

  • Online ISBN: 978-1-4419-1795-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation