Monitoring Bone Growth Using DXA and pQCT

  • Chapter
  • First Online:
Handbook of Growth and Growth Monitoring in Health and Disease
  • 224 Accesses

Abstract

The structure and strength of bone established at the cessation of growth have strong influence on the emergence of skeletal fragility later in life. Monitoring bone growth and timely intervention to avoid long-term consequence of diseases or medications on bone health becomes an indispensable part of paediatric patient care. However, the tools available for assessment of bone mineral density (BMD) and structure in children are limited and most of these tools were developed for and thus limited their use to adults (e.g. DXA). Bone is a 3D structure composed of cortical and trabecular bone varying in proportion from bone to bone and from site to site along a bone. Understanding the effects of diseases or medications on bone development thus requires precise measurement of the 3D bone structure which cannot be fulfilled by 2D imaging techniques. The quantitative computed tomography (QCT), especially the high-resolution peripheral QCT (HR-pQCT), is becoming a necessary tool for paediatric patients due to its capacity to assess bone structure and thus strength. This chapter will address the use of the two commonly used techniques in children, focusing on their indications and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

aBMD and vBMD:

Areal and volumetric bone mineral density

CSA:

Cross-sectional area

DXA:

Dual-energy x-ray absorptiometry

HR-pQCT:

High-resolution pQCT

pQCT:

Peripheral QCT

QCT:

Quantitative computed tomography

References

  • Adams JE. Eur J Radiol. Quantitative computed tomography. 2009;71(3):415–24.

    Article  PubMed  Google Scholar 

  • Bachrach LK, Marcus R, Ott SM, Rosenbloom AL, Vasconez O, Martinez V, Martinez AL, Rosenfeld RG, Guevara-Aguirre J. Bone mineral, histomorphometry, and body composition in adults with growth hormone receptor deficiency. J Bone Miner Res. 1998;13(3):415–21.

    Article  PubMed  CAS  Google Scholar 

  • Bachrach LK, Levine MA, Cowell CT, Shaw N. In: Sawyer AJ, Bachrach LK, Fung EB, editors. Bone densitometry in growing patients – guidelines for clinical practice. Totowa, NJ: Human Press; 2007, pp. 59–72.

    Chapter  Google Scholar 

  • Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B. Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr. 2005;147(6):791–6.

    Article  PubMed  Google Scholar 

  • Binkovitz LA, Henwood MJ. Paediatric DXA: technique and interpretation. Pediatr Radiol. 2007;37(1):21–31.

    Article  PubMed  Google Scholar 

  • Boyd SK. Site-specific variation of bone micro-architecture in the distal radius and tibia. J Clin Densitom. 2008;11(3):424–30.

    Article  PubMed  Google Scholar 

  • Bredella MA, Misra M, Miller KK, Klibanski A, Gupta R. Trabecular structure analysis of the distal radius in adolescent patients with anorexia nervosa using ultra high resolution flat panel based volume CT. J Musculoskelet Neuronal Interact. 2008a;8(4):315.

    PubMed  CAS  Google Scholar 

  • Bredella MA, Misra M, Miller KK, Madisch I, Sarwar A, Cheung A, Klibanski A, Gupta R. Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology. 2008b;249(3):938–46.

    Article  PubMed  Google Scholar 

  • Byers S, Moore AJ, Byard RW, Fazzalari NL. Quantitative histomorphometric analysis of the human growth plate from birth to adolescence. Bone. 2000;27(4):495–501.

    Article  PubMed  CAS  Google Scholar 

  • Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. Am J Dis Child. 1984;138(6):569–70.

    PubMed  CAS  Google Scholar 

  • Cheng S, Nicholson PH, Kroger H, Alen M, Tylavsky F. Differences in estimates of change of bone accrual and body composition in children because of scan mode selection with the prodigy densitometer. J Clin Densitom. 2005;8(1):65–73.

    Article  PubMed  Google Scholar 

  • Cheng S, Xu L, Nicholson PH, Tylavsky F, Lyytikainen A, Wang Q, Suominen H, Kujala UM, Kroger H, Alen M. Low volumetric BMD is linked to upper-limb fracture in pubertal girls and persists into adulthood: a seven-year cohort study. Bone. 2009;45(3):480–6.

    Article  PubMed  Google Scholar 

  • Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19(12):1976–81.

    Article  PubMed  Google Scholar 

  • Ferrari SL, Chevalley T, Bonjour JP, Rizzoli R. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res. 2006;21(4):501–7.

    Article  PubMed  Google Scholar 

  • Flynn J, Foley S, Jones G. Can BMD assessed by DXA at age 8 predict fracture risk in boys and girls during puberty?: an eight-year prospective study. J Bone Miner Res. 2007;22(9):1463–7.

    Article  PubMed  Google Scholar 

  • Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, Lorenc RS, Tosi LL, Ward KA, Ward LM, Kalkwarf HJ. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11(1):43–58.

    Article  PubMed  Google Scholar 

  • Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13(1):143–8.

    Article  PubMed  CAS  Google Scholar 

  • Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15(10):2011–8.

    Article  PubMed  CAS  Google Scholar 

  • Goulding A, Jones IE, Williams SM, Grant AM, Taylor RW, Manning PJ, Langley J. First fracture is associated with increased risk of new fractures during growth. J Pediatr. 2005;146(2):286–8.

    Article  PubMed  Google Scholar 

  • Hogler W, Shaw N. Childhood growth hormone deficiency, bone density, structures and fractures: scrutinizing the evidence. Clin Endocrinol (Oxf). 2009;72(3):281–9.

    Article  Google Scholar 

  • Jones IE, Williams SM, Dow N, Goulding A. How many children remain fracture-free during growth? A longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int. 2002;13(12):990–5.

    Article  PubMed  CAS  Google Scholar 

  • Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, Melton LJ, Riggs BL, Amin S, Muller R, Khosla S. J Bone Miner Res. 2008;24(6):1033–42.

    Article  Google Scholar 

  • Konstantynowicz J, Bialokoz-Kalinowska I, Motkowski R, Abramowicz P, Piotrowska-Jastrzebska J, Sienkiewicz J, Seeman E. The characteristics of fractures in Polish adolescents aged 16–20 years. Osteoporos Int. 2005;16(11):1397–403.

    Article  PubMed  Google Scholar 

  • Koo WW, Walters J, Bush AJ. Technical considerations of dual-energy X-ray absorptiometry-based bone mineral measurements for pediatric studies. J Bone Miner Res. 1995;10(12):1998–2004.

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab. 2003;88(4):1486–91.

    Article  PubMed  CAS  Google Scholar 

  • Modlesky C, Subramanian MP, Miller F. Underdeveloped trabecular bone microarchitecture is detected in children with cerebral palsy using high-resolution magnetic resonance imaging. Osteoporos Int. 2008;19(2):169–76.

    Article  PubMed  CAS  Google Scholar 

  • Pandey N, Bhola S, Goldstone A, Chen F, Chrzanowski J, Terranova CJ, Ghillani R, Jepsen KJ. Interindividual variation in functionally adapted trait sets is established during postnatal growth and predictable based on bone robustness. J Bone Miner Res. 2009;24(12):1969–80.

    Article  PubMed  Google Scholar 

  • Rauch F, Schoenau E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res. 2001;16(4):597–604.

    Article  PubMed  CAS  Google Scholar 

  • Rauch F, Schoenau E. Peripheral quantitative computed tomography of the distal radius in young subjects - new reference data and interpretation of results. J Musculoskelet Neuronal Interact. 2005;5(2):119–26.

    PubMed  CAS  Google Scholar 

  • Schweizer R, Martin DD, Schwarze CP, Binder G, Georgiadou A, Ihle J, Ranke MB. Cortical bone density is normal in prepubertal children with growth hormone (GH) deficiency, but initially decreases during GH replacement due to early bone remodeling. J Clin Endocrinol Metab. 2003;88(11):5266–72.

    Article  PubMed  CAS  Google Scholar 

  • Seeman E. Growth in bone mass and size–are racial and gender differences in bone mineral density more apparent than real? J Clin Endocrinol Metab. 1998;83(5):1414–9.

    Article  PubMed  CAS  Google Scholar 

  • Seeman E, Hopper JL. Genetic and environmental components of the population variance in bone density. Osteoporos Int. 1997;7 Suppl 3:S10–6.

    Article  PubMed  Google Scholar 

  • Wang, Q, Nicholson PH, Timonen J, Alen M, Moilanen P, Suominen H, Cheng S. Monitoring bone growth using quantitative ultrasound in comparison with DXA and pQCT. J Clin Densitom. 2008a;11(2):295–301.

    Article  PubMed  Google Scholar 

  • Wang Q, Seeman E. Skeletal growth and peak bone strength. Best Pract Res Clin Endocrinol Metab. 2008b;22(5):687–700.

    Article  PubMed  Google Scholar 

  • Wang Q, Cheng S, Alen M, Seeman E. Bone’s structural diversity in adult females is established before puberty. J Clin Endocrinol Metab. 2009;94(5):1555–61.

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Alen M, Lyytikainen A, Xu L, Tylavsky F, Kujala U, Kroger H, Seeman E, Cheng S. The familial resemblance and diversity in bone mass and strength in the population are established during the first year of postnatal life. J Bone Miner Res (Epub ahead). 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghasem-Zadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghasem-Zadeh, A., Wang, Q. (2012). Monitoring Bone Growth Using DXA and pQCT. In: Preedy, V. (eds) Handbook of Growth and Growth Monitoring in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1795-9_177

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1795-9_177

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1794-2

  • Online ISBN: 978-1-4419-1795-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation