Modeling of Smart Structures by Meshless Local Integral Equation Method

  • Chapter
ECCOMAS Multidisciplinary Jubilee Symposium

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 14))

  • 1059 Accesses

A meshless method based on the local Petrov-Galerkin approach is proposed for crack analysis in two-dimensional (2-D) piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic problems are considered in this paper. The local weak formulation is employed on circular subdomains where surrounding nodes randomly spread over the analyzed domain. The test functions are taken as unit step functions in derivation of the local integral equations (LIEs). The moving least-squares (MLS) method is adopted for the approximation of the physical quantities in the LIEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atluri, S.N.: The Meshless Method (MLPG) For Domain & BIE Discretizations. Tech Science Press, Forsyth, GA (2004)

    MATH  Google Scholar 

  2. Belytschko, T., Krogauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods; an overview and recent developments. Comp. Meth. Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  3. Berlingcourt, D.A., Curran, D.R., Jaffe, H.: Piezoelectric and piezomagnetic materials and their function in transducers. Phys. Acoustics 1, 169–270 (1964)

    Google Scholar 

  4. Enderlein, M., Ricoeur, A., Kuna, M.: Finite element techniques for dynamic crack analysis in piezoelectrics. Int. J. Fract. 134, 191–208 (2005)

    Article  Google Scholar 

  5. Eringen, C.E., Maugin, M.A.: Electrodynamics of Continua. Springer, Berlin (1990)

    Google Scholar 

  6. Feng, W.J., Su, R.K.L.: Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip. Int. J. Solid. Struct. 43, 5196–5216 (2006)

    Article  MATH  Google Scholar 

  7. Fleming, M., Chu, Y.A., Moran, B., Belytschko, T.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Meth. Eng. 40, 1483–1504 (1997)

    Article  MathSciNet  Google Scholar 

  8. Garcia-Sanchez, F., Rojas-Diaz, R., Saez, A., Zhang, Ch.: Fracture of magnetoelectroelastic composite materials using boundary element method (BEM). Theor. Appl. Fract. Mech. 47, 192–204 (2007)

    Article  Google Scholar 

  9. Garcia-Sanchez, F., Saez, A., Dominguez, J.: Anisotropic and piezoelectric materials fracture analysis by BEM. Comput. Struct. 83: 804–820 (2005)

    Article  Google Scholar 

  10. Hu, K.Q., Li, G.Q., Zhong, Z.: Fracture of a rectangular piezoelectromagnetic body. Mech. Res. Commun. 33, 482–492 (2006)

    Article  Google Scholar 

  11. Kuna. M.: Finite element analyses of cracks in piezoelectric structures — a survey. Arch. Appl. Mech. 76, 725–745 (2006)

    Article  Google Scholar 

  12. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media (second edition). Perga-mon Press, New York (1984)

    Google Scholar 

  13. Li, J.Y.: Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int. J. Eng. Sci. 38, 1993–2011 (2000)

    Article  Google Scholar 

  14. Liu, G.R., Dai, K.Y., Lim, K.M., Gu, Y.T.: A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures. Comput. Mech. 29, 510– 519 (2002)

    Article  MATH  Google Scholar 

  15. Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Article  Google Scholar 

  16. Ohs, R.R., Aluru, N.R.: Meshless analysis of piezoelectric devices. Comput. Mech. 27, 23–36 (2001)

    Article  MATH  Google Scholar 

  17. Pan, E.: A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Eng. Anal. Bound. Elem. 23, 67–76 (1999)

    Article  MATH  Google Scholar 

  18. Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon and Breach, New York (1988)

    Google Scholar 

  19. Sladek, J., Sladek, V., Atluri, S.N.: Meshless local Petrov-Galerkin method in anisotropic elasticity. CMES Comput. Model. Eng. Sci. 6, 477–489 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Sladek, J., Sladek, V., Zhang, Ch., Garcia-Sanchez, F., Wünsche, M.: Meshless Local Petrov-Galerkin method for plane iezoelectricity. CMC: Comput. Mater. Continua 4, 109–118 (2006)

    Google Scholar 

  21. Song, Z.F., Sih, G.C.: Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theor. Appl. Fract. Mech. 39, 189–207 (2003)

    Article  Google Scholar 

  22. Stehfest, H.: Algorithm 368: numerical inversion of Laplace transform. Commun. Assoc. Comput. Mach. 13, 47–49 (1970)

    Google Scholar 

  23. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials. Institute of Materials, London (1998)

    Google Scholar 

  24. Tian, W.Y., Gabbert, U.: Macro-crack-micro-crack problem interaction problem in magneto-electroelastic solids. Mech. Mater. 37, 565–592 (2005)

    Article  Google Scholar 

  25. Tian, W.Y., Rajapakse, R.K.N.D.: Fracture analysis of magnetoelectroelastic solids by using path independent integrals. Int. J. Fract. 131, 311–335 (2005)

    Article  Google Scholar 

  26. Wang, B.L., Mai, Y.W.: Crack tip field in piezoelectric/piezomagnetic media. Eur. J. Mech. A-Solid. 22, 591–602 (2003)

    Article  MATH  Google Scholar 

  27. Wang, B.L., Mai, Y.W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solid. Struct. 44, 387–398 (2007)

    Article  MATH  Google Scholar 

  28. Zhu, X., Wang, Z., Meng, A.: A functionally gradient piezoelectric actuator prepared by metallurgical process in PMN-PZ-PT system. J. Mater. Sci. Lett. 14, 516–518 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Sladek, J., Sladek, V., Wen, P.H. (2009). Modeling of Smart Structures by Meshless Local Integral Equation Method. In: Eberhardsteiner, J., Hellmich, C., Mang, H.A., Périaux, J. (eds) ECCOMAS Multidisciplinary Jubilee Symposium. Computational Methods in Applied Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9231-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9231-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9230-5

  • Online ISBN: 978-1-4020-9231-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation