Effects of Pollution Aerosol and Biomass Burning on Clouds and Precipitation: Numerical Modeling Studies

  • Chapter
Aerosol Pollution Impact on Precipitation

Abstract

The history of numerical modeling of the effect of aerosols on clouds dates back at least 50 years to the work of Howell (1949) and Mordy (1959), who considered the growth of a population of aerosol particles in a rising parcel of air. Models such as these addressed the effects of both aerosol and dynamical parameters (i.e. updraft velocity) on the number and size distribution of cloud droplets. To this day similar models are in wide use to examine the effects of aerosol composition and atmospheric trace gases on droplet activation (e.g. Kulmala et al. 1993; Ghan et al. 1997; Feingold and Chuang 2002; Nenes et al. 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Feingold, G., S.M. Kreidenweis, B. Stevens, and W.R. Cotton, Numerical simulation of stratocumulus processing of cloud condensation nuclei through collision-coalescence, J. Geophys. Res., 101, 21,391–21,402, 1996.

    Article  CAS  Google Scholar 

  • Hegg, D.A., P.V. Hobbs, and L.F. Radke, Observations of the modification of cloud condensation nuclei in wave clouds, J. Rech. Atmos., 14, 217–222, 1980.

    Google Scholar 

  • Fridlind, A.M., A.S. Ackerman, E.J. Jensen, A.J. Heymsfield, M.R. Poellot, D.E. Stevens, D. Wang, L.M. Miloshevich, D. Baumgardner, R.P. Lawson, J.C. Wilson, R.C. Flagan, J.H. Seinfeld, H.H. Jonsson, T.M. VanReken, V. Varutbangkul, and T.A. Rissman, Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei, Science, 304, 718–722, 2004.

    Article  CAS  Google Scholar 

  • Cotton, W.R., Numerical simulation of precipitation development in supercooled cumuli. Part I: Mon. Wea. Rev., 11, 757–763, 1972a.

    Article  Google Scholar 

  • Reisin, T., Z. Levin, and S. Tzivion, Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model, J. Atmos. Sci., 53, 497–519, 1996a.

    Article  Google Scholar 

  • Bower, K.N., and T.W. Choularton, Cloud processing of the cloud condensation nucleus spectrum and its climatological consequences, Q. J. R. Meteorol. Soc., 119, 655–679, 1993.

    Article  Google Scholar 

  • Jacobson, M.Z., Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal, J. Geophys. Res., 108, 4245, doi:10.1029/2002JD002691, 2003.

    Article  CAS  Google Scholar 

  • Kristjánsson, J.E., Studies of the aerosol indirect effect from sulfate and black carbon aerosols, J. Geophys. Res., 107, 4246, doi:10.1029/2001JD000887, 2002.

    Article  Google Scholar 

  • Larson, V.E., J.C. Golaz, H. Jiang and W.R. Cotton, Supplying local microphysics parameterizations with information about subgrid variability: Latin hypercube sampling, J. Atmos. Sci., 62, 4010–4026, 2005.

    Article  Google Scholar 

  • Scott, W.D., and P.V. Hobbs, The formation of sulfate in water droplets, J. Atmos. Sci., 24, 54–57, 1967.

    Article  CAS  Google Scholar 

  • Stevens, B., W.R. Cotton, and G. Feingold, A critique of one- and two-dimensional models of boundary layer clouds with a binned representations of drop microphysics, Atmos. Res., 47–48, 529–553, 1998.

    Article  Google Scholar 

  • Storelvmo, T., J.E. Kristjansson, S.J. Ghan, A. KirkevÃ¥g, Ø. Seland and T. Iversen, Predicting cloud droplet number concentration in CAM-Oslo, J. Geophys. Res., 111, D24208, doi:10.1029/2005JD006300, 2006.

    Article  Google Scholar 

  • Rotstayn, L.D., B.F. Ryan, and J.E. Penner, Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols, Geophys. Res. Lett., 27, 3045–3048, 2000.

    Article  Google Scholar 

  • Ackerman, A.S., O.B. Toon, D.E. Stevens, A.J. Heymsfield, V. Ramanathan, and E.J. Welton, Reduction of tropical cloudiness by soot, Science, 288, 1042–1047, 2000b.

    Article  CAS  Google Scholar 

  • Feingold, G., W.R. Cotton, S.M. Kreidenweis, and J.T. Davis, The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties, J. Atmos. Sci., 56, 4100–4117, 1999.

    Article  Google Scholar 

  • Feingold, G., B. Stevens, W.R. Cotton, and R.L. Walko, An explicit cloud microphysics/LES model designed to simulate the Twomey effect, Atmos. Res., 33, 207–233, 1994.

    Article  Google Scholar 

  • Mossop, S.C., and J. Hallett, Ice crystal concentration in cumulus clouds: Influence of the drop spectrum, Science, 186, 632–634, 1974.

    Article  CAS  Google Scholar 

  • Chen, J.P., and D. Lamb, Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of the microphysical model, J. Atmos. Sci., 51, 2613–2630, 1994.

    Article  Google Scholar 

  • Barth, M.C., D.A. Hegg, and P.V. Hobbs, Numerical modeling of cloud and precipitation chemistry associated with two rainbands and some comparisons with observations, J. Geophys. Res., 97, 5825–5845, 1992.

    CAS  Google Scholar 

  • Kerkweg, A., S. Wurzler, T. Reisin, and A. Bott, On the cloud processing of aerosol particles: An entraining air-parcel model with two dimensional spectral cloud microphysics and a new formulation of the collection kernel, Q. J. Roy. Meteor. Soc., 129, 1–18, 2003.

    Article  Google Scholar 

  • Ackerman, A.S., M.P. Kirkpatrick, D.E. Stevens, and O.B. Toon, The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, 2004.

    Article  CAS  Google Scholar 

  • Rasmussen, R.M., I. Geresdi, G. Thompson, K, Manning, and E. Karplus, Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation, J. Atmos. Sci, 59, 837–860, 2002b.

    Article  Google Scholar 

  • Feingold, G., and P.Y. Chuang, Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate, J. Atmos. Sci., 59, 2006–2018, 2002.

    Article  Google Scholar 

  • Seifert, A. and K.D. Beheng, A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs. continental deep convective storms, Meteorol. and Atmos. Phys., 92, 67–82, 2006b.

    Article  Google Scholar 

  • Khain, A.P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications, J. Atmos. Sci., 61, 2963–2982, 2004.

    Article  Google Scholar 

  • Seifert, A., A.P. Khain, A. Pokrovsky and K. Beheng, A comparison of spectral bin and two-moment bulk mixed-phase microphysics, Atmos. Res, 80, 44–66, 2006.

    Article  Google Scholar 

  • Peng, Y., U. Lohmann, and W.R. Leaitch, Importance of vertical velocity variations in the cloud droplet nucleating process of marine stratus clouds, J. Geophys. Res., 110, D21213, doi:10.1029/2004JD004922, 2005.

    Article  Google Scholar 

  • Roelofs, G.J., Drop size dependent sulfate distribution in a growing cloud, J. Atmos. Chem., 14, 109–118, 1992.

    Article  CAS  Google Scholar 

  • Penner, J.E., J. Quaas, T. Storelvmo, T. Takemura, O. Bouche, H. Guo, A. KirkevÃ¥g, J.E. Kristjánsson, and Ø. Seland, Model intercomparison of indirect aerosol effects, Atmos. Chem. Phys., 6, 3391–3405, 2006.

    Article  CAS  Google Scholar 

  • Hobbs, P.V., Aerosol-cloud interactions, in Aerosol-Cloud-Clim. Interactions, edited by P.V. Hobbs, pp. 33–73, Academic Press, San Diego, 1993.

    Chapter  Google Scholar 

  • Borys, R.D., D.H. Lowenthal, and D.L. Mitchel, The relationship among cloud physics, chemistry and precipitation rate in cold mountain clouds, Atmos. Environ., 34, 2593–2602, 2000.

    Article  CAS  Google Scholar 

  • Stevens, B., G. Feingold, W.R. Cotton, and R.L. Walko, Elements of the microphysical structure of numerically simulated stratocumulus, J. Atmos. Sci., 53, 980–1006, 1996.

    Article  Google Scholar 

  • Hegg, D.A., P.F. Yuen, and T.V. Larson, Modeling the effects of heterogeneous cloud chemistry on the marine particle size distribution, J. Geophys. Res., 97, 12,927–12,933, 1991c.

    Google Scholar 

  • Toon, O.B., R.P. Turco, D. Westphal, R. Malone, and M. Liu, A multidimensional model for aerosols: Description of computational analogs, J. Atmos. Sci., 45, 2123–2144, 1988.

    Article  Google Scholar 

  • Reisner, J., R.M. Rasmussen, and R.T. Bruintjes, Explicit forecasting of supercooled water in winter storms using the MM5 mesoscale model, Q. J. Roy. Meteorol. Soc., 124, 1071–1107, 1998.

    Article  Google Scholar 

  • Leroy, D., M. Monier, W. Wobrock, and A.I. Flossmann, A numerical study of the effects of the aerosol particle spectrum on the development of the ice phase and precipitation formation, Atmos. Res., 80, 15–45, 2006.

    Article  CAS  Google Scholar 

  • Kogan, Y.L., M.P. Khairoutdinov, D.K. Lilly, Z.N. Kogan, and Q. Liu, Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics, J. Atmos. Sci., 52, 2923–2940, 1995.

    Article  Google Scholar 

  • Khain, A.P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, Notes on the state-of-the-art numerical modeling of cloud microphysics, Atmos. Res., 55, 159–224, 2000.

    Article  Google Scholar 

  • Jacobson, M.Z., Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate, J. Phys. Chem. A., 110, 6860–6873, 2006.

    Article  CAS  Google Scholar 

  • Tzivion, S., G. Feingold and Z. Levin, An efficient numerical solution to the stochastic collection equation, J. Atmos. Sci., 44, 3139–3149, 1987.

    Article  Google Scholar 

  • Seifert, A. and K.D. Beheng, A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model Description, Meteorol. and Atmos. Phys., 92, 45–66, 2006a.

    Article  Google Scholar 

  • Erlick, C., A.P. Khain, M. Pinsky and Y. Segal, The effect of turbulent velocity fluctuations on drop spectrum broadening in stratiform clouds, Atmos. Res. 75, 15–45, 2005.

    Article  Google Scholar 

  • Twomey, S., Aerosols, clouds and radiation, Atmos. Environ., 25A, 2435–2442, 1991.

    CAS  Google Scholar 

  • Verlinde, J., P.J. Flatau, and W.R. Cotton, Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes, J. Atmos. Sci., 47, 2871–2880, 1990.

    Article  Google Scholar 

  • Khain, A.P., D. Rosenfeld, and A. Pokrovsky, Simulating convective clouds with sustained supercooled liquid water down to –37.5ºC using a spectral microphysics model, Geophys. Res. Lett., 28, 3887–3890, 2001.

    Article  Google Scholar 

  • Bott, A., A flux method for the numerical solution of the stochastic collection equation: Extension to two dimensional particle distributions, J. Atmos. Sci., 57, 284–294, 2000.

    Article  Google Scholar 

  • Yin, Y., S. Wurzler, Z. Levin, and T.G. Reisin, Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties, J. Geophys. Res., 107, 4724, doi:10.1029/2001JD001544, 2002.

    Article  Google Scholar 

  • Stevens, B., D.H. Lenschow, G. Vali, H. Gerber, A. Bandy, B. Blomquist, J.L. Brenguier, C.S. Bretherton, F. Burnet, T. Campos, S. Chai, I. Faloona, D. Friesen, S. Haimov, K. Laursen, D.K. Lilly, S. Loehrer, S.P. Malinowski, B. Morley, M.D. Petters, Dynamics and chemistry of marine stratocumulus -DYCOMS-II, 2003, Bull. Amer. Meteorol. Soc., 84, 579–593, 2003.

    Article  Google Scholar 

  • Ghan, A.J., L.R. Leung, R.C. Easter, and H. Abdul-Razzak, Prediction of droplet number in a general circulation model, J. Geophys. Res., 102, 21,777–21,794, 1997.

    Google Scholar 

  • Mordy, W.A., Computations of the growth by condensation of a population of cloud droplets, Tellus, 11, 16–44, 1959.

    Article  Google Scholar 

  • Grabowski, W.W., X. Wu, and M.W. Moncrieff, Cloud resolving modeling of tropical cloud systems during Phase III of GATE. Part III: Effects of cloud microphysics, J. Atmos. Sci., 56, 2384–2402, 1999.

    Article  Google Scholar 

  • Meyers, M.P., R.L. Walko, J.Y. Harrington, and W.R. Cotton, New RAMS cloud microphysics prameterization. Part II: The two-moment scheme, Atmos. Res., 45, 3–39, 1997.

    Article  Google Scholar 

  • Yin, Y., Z. Levin, T.G. Reisin and S. Tzivion: Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics, J. Appl. Meteor., 39, 1460–1472, 2000b.

    Article  Google Scholar 

  • Garrett, T.J., P.V. Hobbs, and L.F. Radke, High Aitken nucleus concentrations above cloud tops in the Arctic, J. Atmos. Sci., 59, 779–783, 2002.

    Article  Google Scholar 

  • Easter, R.C., and P.V. Hobbs, The formation of sulfates and the enhancement of cloud condensation nuclei in clouds, J. Atmos. Sci., 31, 1586–1594, 1974.

    Article  CAS  Google Scholar 

  • Khairoutdinov, M.F., and Y.L. Kogan, A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer, J. Atmos. Sci., 56, 2115–2131, 1999.

    Article  Google Scholar 

  • Segal, Y., A.P. Khain, M. Pinsky and D. Rosenfeld, Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model, Atmos. Res., 71, 3–34, 2004

    Article  Google Scholar 

  • Guan, H., S.G. Cober, G.A. Isaac, A. Tremblay and A. Methot, Comparison of three cloud forecast schemes with in-situ aircraft measurements. Wea. Forecasting, 17, 1226–1235, 2002.

    Article  Google Scholar 

  • Hegg, D.A., R. Majeed, P.F. Yuen, M.B. Baker, and T.V. Larson, The impacts of SO2 oxidation in cloud drops and in haze particles on aerosol light scattering and CCN activity, Geophys. Res. Lett., 23, 2613–2616, 1996.

    Article  CAS  Google Scholar 

  • Nenes, A., R.J. Charlson, M.C. Facchini, M. Kulmala, A. Laaksonen, and J.H. Seinfeld, Can chemical effects on cloud droplet number rival the first indirect effect? Geophys. Res., Lett., 29, 1848, doi:10.1029/2002GL015295, 2002.

    Article  Google Scholar 

  • Grabowski, W.W., Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium, J. Clim., 19, 4664–4682, 2006

    Article  Google Scholar 

  • Givati, A., and D. Rosenfeld, Quantifying precipitation suppression due to air pollution, J. Appl. Meteor., 43, 1038–1056, 2004.

    Article  Google Scholar 

  • Johnson, B.T., K.P. Shine and P.M. Forster, The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus, Q. J. Roy. Meteor. Soc., 30, 1407–1422, 2004.

    Article  Google Scholar 

  • Feichter, J., E. Roeckner, U. Lohmann, and B. Liepert, Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing, J. Clim., 17(12), 2384–2398, 2004.

    Article  Google Scholar 

  • Nober, F., H.F. Graf and D. Rosenfeld, Sensitivity of the global circulation to the suppression of precipitation by anthropogenic aerosols, Global Planet Change., 37, 57–80, 2003.

    Article  Google Scholar 

  • Feingold, G., R.L. Walko, B. Stevens, and W.R. Cotton, Simulations of marine stratocumulus using a new microphysical parameterization scheme, Atmos. Res., 47–48, 505–528, 1998.

    Article  Google Scholar 

  • Bott, A., T. Trautmann, and W. Zdunkowski, A numerical model of the cloud-topped planetary boundary-layer: Radiation, turbulence and spectral microphysics in marine stratus, Q. J. Roy. Meteorol. Soc., 122, 635–667, 1996.

    Article  Google Scholar 

  • Quaas, J., O. Boucher, and U. Lohmann, Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data, Atmos. Chem. Phys., 6, 947–955, 2006.

    Article  CAS  Google Scholar 

  • Zhang, J., U. Lohmann, and P. Stier, A microphysical parameterization for convective clouds in the ECHAM5 Climate Model: 1. Single column model results evaluated at the Oklahoma ARM site, J. Geophys. Res., 110, D15S07, doi:10.1029/2004JD005128, 2005b.

    Article  Google Scholar 

  • Albrecht, B.A., Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.

    Article  CAS  Google Scholar 

  • Fisch, G., J. Tota, L.A.T. Machado, M.A.F. Silva Dias, R.F. Da F. Lyra, C.A. Nobre, A.J. Dolman, and J.H.C. Gash, The convective boundary layer over pasture and forest in Amazonia, Theor. Appl. Climatol., 78, 47–59, 2004.

    Article  Google Scholar 

  • Berry, E.X., Cloud droplet growth by coalescence, J. Atmos. Sci., 24, 688–701, 1967.

    Article  Google Scholar 

  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, Breaking the cloud parameterization deadlock, Bull. Amer. Meteorol. Soc., 84, 1547–1564, 2003.

    Article  Google Scholar 

  • Cotton, W.R., G.D. Alexander, R. Hertenstein, R.L. Walko, R.L. McAnelly, and M. Nicholls, Cloud venting-A review and some new global annual estimates, Earth Sci. Rev., 39, 169–206, 1995.

    Article  CAS  Google Scholar 

  • Pincus, R., and S.A. Klein, Unresolved spatial variability and microphysical process rates in large-scale models, J. Geophys. Res., 105, 27,059–27,065, 2000.

    Article  Google Scholar 

  • Woodcock, A.H., R.A. Duce, and J.L. Moyers, Salt particles and raindrops in Hawaii, J. Atmos. Sci., 28, 1252–1257, 1971.

    Article  CAS  Google Scholar 

  • Golaz, J.C., V.E. Larson, and W.R. Cotton, A PDF-based model for boundary layer clouds. Part I: Method and model description, J. Atmos. Sci., 59, 3540–3551, 2002a.

    Article  Google Scholar 

  • Meyers, M.P., P.J. DeMott, and W.R. Cotton, New primary ice nucleation parameterizations in an explicit cloud model, J. Appl. Meteor., 31, 708–721, 1992.

    Article  Google Scholar 

  • Lohmann, U. and G. Lesins, Stronger constraints on the anthropogenic indirect aerosol effect, Science, 298, 1012–1016, 2002.

    Article  CAS  Google Scholar 

  • Lynn, B., A.P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, Spectral (bin) microphysics coupled with a Mesoscale Model (MM5). Part 2: Simulation of a CaPe rain event with squall line, Mon. Wea. Rev., 133, 59–71, 2005b.

    Article  Google Scholar 

  • Chuang, C.C., J.E. Penner, K.E. Taylor, A.S. Grossman, and J.J. Walton, An assessment of the radiative effects of anthropogenic sulfate, J. Geophys. Res., 102, 3761–3778, 1997.

    Article  CAS  Google Scholar 

  • Teller, A. and Z. Levin, The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model, Atmos. Chem. and Phys., 6, 67–80, 2006.

    Article  CAS  Google Scholar 

  • Hounslow, M.J., R.L. Ryall, and V.R. Marshall, A discretized population balance for nucleation, growth and aggregation, AIChE J, 34, 1821–1832, 1988.

    Article  CAS  Google Scholar 

  • Johns, T.C., C.F. Durman, H.T. Banks, M.J. Roberts, A.J. McLaren, J.K. Ridley, C.A. Senior, K.D. Williams, A. Jones, G.J. Rickard, S. Cusack, W.J. Ingram, M. Crucifix, D.M.H. Sexton, M.M. Joshi, B.W. Dong, H. Spencer, R.S.R. Hill, J.M. Gregory, A.B. Keen, A.K. Pardaens, J.A. Lowe, A. Bodas-Salcedo, S. Stark and Y. Searl, The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations, J. Clim. 19, 1327–1353, 2006.

    Article  Google Scholar 

  • Takemura, T., T. Nozawa, S. Emori, T.Y. Nakajima, and T. Nakajima, Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model, J. Geophys. Res., 110, D02202, doi:10.1029/2004JD00502, 2005.

    Article  CAS  Google Scholar 

  • Rudich, Y., O. Khersonsky, and D. Rosenfeld, Treating clouds with a grain of salt, Geophys. Res. Lett., 29, 2060, doi:10.1029/2002GL016055, 2002.

    Article  Google Scholar 

  • Telford, J.W., A new aspect of coalescence theory, J. Meteorol., 12, 436–444, 1955.

    Google Scholar 

  • Carrió, G.G., H. Jiang, and W.R. Cotton, Impact of aerosol intrusions on the Arctic boundary layer an on sea-ice melting rates. Part II: Sea ice melting rates, J. Atmos. Sci, 62, 3094–3105, 2005b.

    Article  Google Scholar 

  • DeMott P.J., D.J. Cziczo, A.J. Prenni, D.M. Murphy, S.M. Kreidenweis, D.S. Thomson, R. Borys, and D.C. Rogers, Measurements of the concentration and composition of nuclei for cirrus formation, Proc. Natnl. Acad. Sci., 100(25), 14,655–14,660, 2003b

    CAS  Google Scholar 

  • Kaufman, Y.J., O. Boucher, D. Tanré, M. Chin, L.A. Remer, and T. Takemura, Aerosol anthropogenic component estimated from satellite data, Geoph. Res. Lett., 32, L17804, doi:10.1029/2005GL023125, 2005b.

    Article  Google Scholar 

  • Feingold, G., R. Boers, B. Stevens, and W.R. Cotton, A modeling study of the effect of drizzle on cloud optical depth and susceptibility, J. Geophys. Res., 102, 13,527–13,534, 1997.

    Article  Google Scholar 

  • Nickerson, E.C., E. Richard, R. Rosset, and D.R. Smith, The numerical simulation of clouds, rain, and airflow over the Vosges and Black Forest Mountains: A meso-beta model with parameterized microphysics, Mon. Wea. Rev., 114, 398–414, 1986.

    Article  Google Scholar 

  • Koren, I., Y.J. Kaufman, L.A. Remer, and J.V. Martins, Measurements of the effect of Amazon smoke on inhibition of cloud formation, Science, 303, 1342–1345, 2004.

    Article  CAS  Google Scholar 

  • Takahashi, T., Hail in an axisymmetric cloud model, J. Atmos. Sci., 33, 1579–1601, 1976.

    Article  Google Scholar 

  • Ackerman, A.S., P.V. Hobbs, and O.B. Toon, A model for particle microphysics, turbulent mixing, and radioactive transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements, J. Atmos. Sci., 52, 1204–1236, 1995.

    Article  Google Scholar 

  • Tabazadeh, A., R.J. Yokelson, H.B. Singh, P.V. Hobbs, J.H. Crawford, and L.T. Iraci, Heterogeneous chemistry involving methanol in tropospheric clouds, Geophys. Res. Lett., 31, L06114, doi:10.1029/2003GL018775, 2004.

    Article  CAS  Google Scholar 

  • Taylor, G.R., Sulfate production and deposition in midlatitude continental cumulus clouds. Part II: Chemistry model formulation and sensitivity analysis, J. Atmos. Sci., 46, 1991–2007, 1989.

    Article  Google Scholar 

  • Lohmann, U., K. Broekhuizen, R. Leaitch, N. Shantz, and J. Abbatt, How efficient is cloud droplet formation of organic aerosols? Geophys. Res. Lett., 31, L05108, doi:10.1029/2003GL018999, 2004.

    Article  CAS  Google Scholar 

  • van den Heever, S., and W.R. Cotton, Urban aerosol impacts on downwind convective storms, J. Appl. Meteor. Climat., 46, 828–850, 2007.

    Article  Google Scholar 

  • Hatzianastassiou, N., W. Wobrock, and A.I. Flossmann, The effect of cloud-processing of aerosol particles on clouds and radiation, Tellus, 50B, 478–490, 1998.

    CAS  Google Scholar 

  • Prenni, A.J., J.Y. Harrington, M. Tjernström, P.J. DeMott, A. Avramov, C.N. Long, S.M. Kreidenweis, P.Q. Olsson, and J. Verlinde, Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Bull. Amer. Meteor. Soc., 88, 541–550, 2007.

    Article  Google Scholar 

  • Berry, E.X., and R.L. Reinhardt, An analysis of cloud drop growth by collection. Part I: Double distributions, J. Atmos. Sci., 31, 1814–1824, 1974.

    Article  Google Scholar 

  • Wang, P.K., Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapour in midlatitudes, J. Geophys. Res., 108, 4194, doi:10.1029/2002JD002581, 2003.

    Article  Google Scholar 

  • Khairoutdinov, M.F., and Y.L. Kogan, A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus, Mon. Wea. Rev., 128, 229–243, 2000.

    Article  Google Scholar 

  • Kiehl, J.T., T.L. Schneider, P.J. Rasch, M.C. Barth and J. Wong, Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3, J. Geophys. Res., 105, 1441–1457, 2000.

    Article  CAS  Google Scholar 

  • Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson, Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257–259, 1999.

    Article  CAS  Google Scholar 

  • Lu, M.L., and J.H. Seinfeld, Study of the aerosol indirect effect by LES of marine stratocumulus, J. Atmos. Sci., 62, 3909–3932, 2005

    Article  Google Scholar 

  • Grassl, H, Albedo reduction and radiative heating of clouds by absorbing aerosol particles, Contribution to Atmos. Phys., Oxford, 48, 199–210, 1975.

    Google Scholar 

  • Liu, Q., Y.L., Kogan, D.K. Lilly, D.W. Johnson, G.E. Innis, P.A. Durkee and K.E. Nielsen, Modeling of Ship effluent transport and its sensitivity to boundary layer structure, J. Atmos. Sci., 57, 2779–2791, 2000.

    Article  Google Scholar 

  • Cotton, W.R., G.J. Tripoli, R.M. Rauber, and E.A. Mulvihill, Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall, J. Clim. Appl. Meteorol., 25, 1658–1680, 1986.

    Article  Google Scholar 

  • Feingold, G., H. Jiang, and J.Y. Harrington, On smoke suppression of clouds in Amazonia, Geophys. Res. Lett., 32(2), L02804, doi:10.1029/2004GL021369, 2005.

    Article  Google Scholar 

  • Wang, S., Q. Wang, and G. Feingold, Turbulence, condensation and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds, J. Atmos. Sci., 60, 262–278, 2003.

    Article  Google Scholar 

  • Milbrandt, J., and M.K. Yau, A multi-moment bulk microphysics parameterization. Part I: Analysis of the role of the shape parameter, J. Atmos. Sci., 62, 3051–3064, 2005a.

    Article  Google Scholar 

  • Hindman, E.E, II., P.V. Hobbs, and L.F. Radke, Cloud condensation nucleus size distributions and their effects on cloud droplet size distributions, J. Atmos. Sci., 34, 951–955, 1977b.

    Article  Google Scholar 

  • Ferrier, B.S., A double-moment multiple-phase four-class bulk ice scheme. Part I: Description, J. Atmos. Sci., 51, 249–280, 1994.

    Article  Google Scholar 

  • Chung, S.H., and J.H. Seinfeld, Climate response of direct radiative forcing of anthropogenic black carbon, J. Geophys. Res., 110, D11102, doi:10.1029/2004JD005441, 2005.

    Article  Google Scholar 

  • Yin, Y., K.S. Carslaw, and G. Feingold, Vertical transport and processing of aerosols in a mixed-phase convective cloud and the feedback on cloud development, Q. J. Roy. Meteorol. Soc., 131(605), 221–245, 2005.

    Article  Google Scholar 

  • Borys, R.D., D.H. Lowenthal, S.A. Cohn, and W.O.J. Brown, Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snow rate, Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855, 2003.

    Article  Google Scholar 

  • Pielke, R.A., W.R. Cotton, R.L. Walko, C.J. Tremback, W.A. Lyons, L.D. Grasso, M.E. Nicholls, M.D. Moran, D.A. Wesley, T.J. Lee, J.H. Copeland: A comprehensive meteorological modeling system – RAMS, Meteorol. Atmos. Phys., 49, 69–91, 1992.

    Article  Google Scholar 

  • Paluch, I.R., and D.H. Lenschow, Stratiform cloud formation in the marine boundary layer, J. Atmos. Sci., 48, 2141–2158, 1991.

    Article  Google Scholar 

  • Beheng, K.D., A parameterization of warm cloud microphysical conversion processes, Atmos. Res., 33, 193–206, 1994.

    Article  Google Scholar 

  • Ming, Yi, V. Ramaswamy, L.J. Donner, V.T.J. Phillips, S.A. Klein, P.A. Ginoux and L.W. Horowitz: Modeling the interactions between aerosols and liquid water clouds with a self- consistent cloud scheme in a general circulation model, J. Atmos. Sci., 64, 1189–1209, 2007.

    Article  Google Scholar 

  • Koenig, L.R., and F.W. Murray, Ice-bearing cumulus cloud evolution: Numerical simulations and general comparison against observations, J. Appl. Meteor., 15, 747–762, 1976.

    Article  Google Scholar 

  • Lohmann, U. and J. Feichter, Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys. Res. Lett., 28, 159–161, 2001.

    Article  CAS  Google Scholar 

  • Menon, S., and L. Rotstayn, The radiative influence of aerosol effects on liquid-phase cumulus and stratiform clouds based on sensitivity studies with two climate models, Clim. Dyn., 27, 345–356, 2006.

    Article  Google Scholar 

  • Lohmann, U. and J. Feichter, Global indirect aerosol effects: A review, Atmos. Chem. Phys. 5, 715–737, 2005.

    Article  CAS  Google Scholar 

  • Roelofs, G.J., A cloud chemistry sensitivity study and comparison of explicit and bulk cloud model performance, Atmos. Environ., 27A, 2255–2264, 1993.

    CAS  Google Scholar 

  • Paeth, H. and J. Feichter, Greenhouse-gas versus aerosol forcing and African climate response, Clim Dyn., 26, 35–54, 2006.

    Article  Google Scholar 

  • Eagan, R.C., P.V. Hobbs, and L.F. Radke, Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires, J. Appl. Meteor., 13, 553–557, 1974a.

    Article  Google Scholar 

  • Kogan, Y.L., D.K. Lilly, Z.N. Kogan, and V.V. Filyushkin, The effect of CNN regeneration on the evolution of stratocumulus cloud layers, Atmos. Res., 33, 137–150, 1994.

    Article  Google Scholar 

  • Cooper, W.A., R.T. Bruintjes, and G.K. Mather, Calculations pertaining to hygroscopic seeding with flares, J. Appl. Meteor., 36, 1449–1469, 1997.

    Article  Google Scholar 

  • Bott, A., U. Sievers, and W. Zdunkowski, A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics, J. Atmos. Sci., 47, 2153–2166, 1990.

    Article  Google Scholar 

  • Manton, M.J., and W.R. Cotton, Parameterization of the atmospheric surface layer, J. Atmos. Sci., 34, 331–334, 1977.

    Article  Google Scholar 

  • Walko, R.L, W.R. Cotton, J.L. Harrington, and M.P. Meyers, New RAMS cloud microphysics parameterization. Part I: The single-moment scheme, Atmos. Res., 38, 29–62, 1995.

    Article  Google Scholar 

  • Hallett, J., and S.C. Mossop, Production of secondary ice crystals during the riming process, Nature, 249, 26–28, 1974.

    Article  CAS  Google Scholar 

  • Kulmala, M., A. Laaksonen, P. Korhonen, T. Vesala, T. Ahonen, and J.C. Barrett, The effect of atmospheric nitric acid vapour on cloud condensation nucleus activation, J. Geophys. Res., 98, 22,949–22,958, 1993.

    Article  CAS  Google Scholar 

  • Lohmann, U. and K. Diehl, Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds, J. Atmos. Sci., 62, 968–982, 2006.

    Article  Google Scholar 

  • Rotstayn, L.D., and U. Lohmann, Tropical rainfall trends and the indirect aerosol effect, J. Clim., 15, 2103–2116, 2002.

    Article  Google Scholar 

  • Scott, B.C., and P.V. Hobbs, A theoretical study of the evolution of mixed-phase cumulus clouds, J. Atmos. Sci., 34, 812–826, 1977.

    Article  Google Scholar 

  • Bleck, R., A fast approximative method for integrating the stochastic coalescence equation, J. Geophys. Res., 75, 5165–5171, 1970.

    Article  Google Scholar 

  • Respondek, P.S., A.I. Flossmann, R.R. Alheit, and H.R. Pruppacher, A theoretical study of the wet removal of atmospheric pollutants. Part V: The uptake, redistribution and deposition of (NH4)2SO4 by a convective cloud containing ice, J. Atmos. Sci., 52, 2121–2132, 1995.

    Article  Google Scholar 

  • Jiang, H., G. Feingold, and W.R. Cotton, Simulations of aerosol-cloud-dynamical feedbacks resulting from entrainment of aerosol into the marine boundary layer during the Atlantic Stratocumulus Transition Experiment, J. Geophys. Res., 107, 4813, doi:10.1029/2001JD001502, 2002.

    Article  Google Scholar 

  • Lynn, B., A.P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, Spectral (bin) microphysics coupled with a Mesoscale Model (MM5). Part 1: Model description and first results, Mon. Wea. Rev., 133, 44–58, 2005a.

    Article  Google Scholar 

  • Clarke, A.D., F. Eisele, V.N. Kapustin, K. Moore, D. Tanner, L. Mauldin, M. Litchy, B. Lienert, M.A. Carroll, and G. Albercook, Nucleation in the equatorial free troposphere: Favorable environments during PEM-Tropics, J. Geophys. Res., 104, 5735–5744, doi:10.1029/98JD02303, 1999.

    Article  CAS  Google Scholar 

  • Wurzler, S., T.G. Reisin, and Z. Levin, Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions, J. Geophys. Res., 105, 4501–4512, 2000.

    Article  CAS  Google Scholar 

  • Hegg, D.A., and T.V. Larson, The effects of microphysical parameterization on model predictions of sulfate production in clouds, Tellus, 42B, 272–284, 1990.

    CAS  Google Scholar 

  • Stephens, G.L., D.G. Vane, R.J. Boain, G.G. Mace, K. Sassen, Z. Wang, A.J. Illingworth, E.J. O'Connor, W.B. Rossow, S.L. Durden, S.D. Miller, R.T. Austin, A. Benedetti, C. Mitrescu, and the CloudSat Science Team, The Cloud-SAT mission and the A-Train: A new dimension of space-based observations of clouds and precipitation, Bull. Amer. Meteorol. Soc., 83, 1771–1790, 2002.

    Article  Google Scholar 

  • Flossmann, A.I., Interaction of aerosol particles and clouds, J. Atmos. Sci., 55, 879–887, 1998.

    Article  Google Scholar 

  • Clark, T.L., Use of log-normal distributions for numerical calculations of condensation and collection, J. Atmos. Sci., 33, 810–821, 1976.

    Article  Google Scholar 

  • Rosenfeld, D., R. Lahav, A.P. Khain, and M. Pinsky, The role of sea spray in cleansing air pollution over ocean via cloud processes, Science, 297, 1667–1670, 2002.

    Article  CAS  Google Scholar 

  • Rosenfeld, D., and W.L. Woodley, Deep convective clouds withs sustaine highly supercooled liquid water until –37.5°C, Nature, 405, 440–442, 2000.

    Article  CAS  Google Scholar 

  • Boucher, O., and U. Lohmann, The sulfate-CCN-cloud albedo effect, Tellus, 47B, 281–300, 1995.

    CAS  Google Scholar 

  • Twomey, S., The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, 1977.

    Article  Google Scholar 

  • Saleeby, S.M., and W.R. Cotton, A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations, J. Appl. Meteorol., 43, 182–195, 2004.

    Article  Google Scholar 

  • Fitzgerald, J.W., Effect of aerosol composition on cloud droplet size distribution: A numerical study, J. Atmos. Sci., 31, 1358–1367, 1974.

    Article  Google Scholar 

  • Khain, A.P., A. Pokrovsky, and I. Sednev, Some effects of cloud-aerosol interaction on cloud microphysics structure and precipitation formation: Numerical experiments with a spectral microphysics cloud ensemble model, Atmos. Res., 52, 195–220, 1999.

    Article  Google Scholar 

  • Flossman, A.I., and H.R. Pruppacher, A theoretical study of the wet removal of atmospheric pollutants. Part III: The uptake, redistribution, and deposition of (NH4)2SO4 particles by a convective cloud using a two-dimensional cloud dynamics model, J. Atmos. Sci., 45, 1857–1871, 1988.

    Article  Google Scholar 

  • Jiang, H., and G. Feingold, Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model, J. Geophys. Res., 111, D01202, doi:10.1029/2005JD006138, 2006.

    Article  Google Scholar 

  • Carrió, G.G., H. Jiang, and W.R. Cotton, Impact of aerosol intrusions on the Arctic boundary layer an on sea-ice melting rates. Part I: May 4, 1998 case, J. Atmos. Sci., 62, 3082–3093, 2005a.

    Article  Google Scholar 

  • Rotstayn, L.D., and Y.G. Liu, A smaller global estimate of the second indirect aerosol effect, Geophys. Res. Lett., 32, L05708, doi:10.1029/2004GL021922, 2005.

    Article  Google Scholar 

  • McGraw, R., Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. and Tech., 27, 255–265, 1997.

    Article  CAS  Google Scholar 

  • Howell, W.E., The growth of cloud drops in uniformly cooled air, J. Meteor., 6, 134–149, 1949.

    Google Scholar 

  • Wang, C., A modeling study on the climate impacts of black carbon aerosols, J. Geophys. Res., 109, D03106, doi:10.1029/2003JD004084, 2004.

    Article  CAS  Google Scholar 

  • Jacobson, M.Z., Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II. Atmos. Environ., 33, 3635–3649, 1999.

    Article  CAS  Google Scholar 

  • Feingold, G., and S.M. Kreidenweis, Does heterogeneous processing of aerosol increase the number of cloud droplets? J. Geophys. Res., 105, 24,351–24,361, 2000.

    Article  CAS  Google Scholar 

  • van den Heever, S.C., G.G. Carrio, W.R. Cotton, P.J. DeMott, and A.J. Prenni, Impacts of nucleating aerosol on Florida convection. Part I: Mesoscale Simulations, J. Atmos. Sci., 63, 1752–1775, 2006.

    Article  Google Scholar 

  • Easter, R.C., S.J. Ghan, Y. Zhang, R.D. Saylor, E.G. Chapman, N.S. Laulainen, H. Abdul-Razzak, L.R. Leung, X.D. Bian, and R.A. Zaveri, MIRAGE: Model description and evaluation of aerosols and trace gases, J. Geophys. Res., 109, D20210, doi:10.1029/2004JD004571, 2004.

    Article  CAS  Google Scholar 

  • Lohmann, U., J. Feichter, C.C. Chuang, and J.E. Penner, Prediction of the number of cloud droplets in the ECHAM GCM, J. Geophys. Res., 104, 9169–9198, 1999.

    Article  CAS  Google Scholar 

  • Larson, V.E., R. Wood, P.R. Field, J.-C. Golaz, T.H. Vonder Haar, and W.R. Cotton, Small-scale and mesoscale variability of scalars in cloudy boundary layers: One-dimensional probability density functions, J. Atmos. Sci., 58, 1978–1996, 2001.

    Article  Google Scholar 

  • Williams, K.D., A. Jones, D.L. Roberts, C.A. Senior, and M.J. Woodage, The response of the climate system to the indirect effects of anthropogenic sulfate aerosol, Clim. Dynamics., 17, 845–856, 2001.

    Article  Google Scholar 

  • Yin, Y., Z. Levin, T.G. Reisin, and S. Tzivion, The effects of giant condensation nuclei on the development of precipitation in convective clouds – A numerical study, Atmos. Res., 53, 91–116, 2000a.

    Article  Google Scholar 

  • Lohmann, U., Can anthropogenic aerosols decrease the snowfall rate? J. Atmos. Sci., 61, 2457–2468, 2004.

    Article  Google Scholar 

  • Feingold, G., and S.M. Kreidenweis, Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry, J. Geophys. Res., 107, 4687, doi:10.1029/2002JD002054, 2002.

    Article  CAS  Google Scholar 

  • Hansen, J., M. Sato, and R. Ruedy, Radiative forcing and climate response, J. Geophys. Res., 102, 6831–6864, 1997.

    Article  CAS  Google Scholar 

  • Kessler, E., On the Distribution and Continuity of Water Substance in Atmospheric Circulation, Meteorol. Monogr., 10, 84 pp., American Meteorological Society, Boston, MA, 1969.

    Google Scholar 

  • Clark, T.L., and W.D. Hall, A cloud physical parameterization method using movable basis functions: Stochastic coalescence parcel calculations, J. Atmos. Sci., 40, 1709–1728, 1983.

    Article  Google Scholar 

  • Hoppel, W.A., J.W. Fitzgerald, G.M. Frick, R.E. Larson, and E.J. Mack, Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean, J. Geophys. Res., 95, 3659–3686, 1990.

    Article  Google Scholar 

  • Martin, G.M., D.W. Johnson, and A. Spice, The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds, J. Atmos. Sci., 51, 1823–1842, 1994.

    Article  Google Scholar 

  • Menon, S., J.L. Brenguier, O. Boucher, P. Davison, A.D. Del Genio, J. Feichter, S.Ghan, S. Guibert, X.H. Liu, U. Lohmann, H. Pawlowska, J.E. Penner, J. Quaas, D.L. Roberts, L. Schuller, and J. Snider, Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations, J. Geophys. Res., 108, 4762, doi:10.1029/2003JD003902, 2003.

    Article  Google Scholar 

  • Clark, T.L., Numerical modelling of the dynamics and microphysics of warm cumulus convection, J. Atmos. Sci., 30, 857–878, 1973.

    Article  Google Scholar 

  • Seifert, A. and K.D. Beheng, A double-moment parameterization for simulating autoconversion, accretion and self collection, Atmos. Res. 59–60, 265–281, 2001.

    Article  Google Scholar 

  • Cotton, W.R., R.A. Pielke, Sr., R.L. Walko, G.E. Liston, C.J. Tremback, H. Jiang, R.L. McAnelly, J.Y. Harrington, M.E. Nicholls, G.G. Carrió, and J.P. McFadden, RAMS 2001: Current status and future directions. Meteor. Atmos Physics, 82, 5–29, 2003.

    Article  Google Scholar 

  • Liepert, B.G., J. Feichter, U. Lohmann, and E. Roeckner, Can aerosols spin down the water cycle in a warmer and moister world, Geophys. Res. Lett., 31, L06207, doi:10.1029/2003GL019060, 2004.

    Article  Google Scholar 

  • Kovetz, A., and B. Olund, The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent, J. Atmos. Sci., 26, 1060–1065, 1969.

    Article  Google Scholar 

  • Saleeby, S.M., and W.R. Cotton, A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado winter snowfall event, J. Appl. Meteorol., 44, 1912–1929, 2005.

    Article  Google Scholar 

  • Xue, H., and G. Feingold, Large eddy simulations of trade-wind cumuli: Investigation of aerosol indirect effects, J. Atmos. Sci., 1605–1622, 2006.

    Google Scholar 

  • Johnson, D.B., The role of coalescence nuclei in warm rain initiation, Ph.D. dissertation, University of Chicago, 119 pp., 1979.

    Google Scholar 

  • Johnson, B.T., Large-eddy simulations of the semidirect aerosol effect in shallow cumulus regimes, J. Geophys. Res., 110, D14206, doi:10.1029/2004JD005601, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Feingold, G., Cotton, W., Lohmann, U., Levin, Z. (2009). Effects of Pollution Aerosol and Biomass Burning on Clouds and Precipitation: Numerical Modeling Studies. In: Levin, Z., Cotton, W.R. (eds) Aerosol Pollution Impact on Precipitation. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8690-8_7

Download citation

Publish with us

Policies and ethics

Navigation