The Adventures of Superoxide Dismutase in Health and Disease: Superoxide in the Balance

  • Chapter
Oxidants in Biology

This chapter focuses on superoxide dismutases (SOD), a group of enzymes important for removing biologically generated superoxide anion radical (O2 .−). These enzymes function by catalyzing the dismutation of superoxide radicals to hydrogen peroxide and oxygen, and their action helps to protect cells from oxidation of lipids, proteins and DNA. These enzymes are crucial in maintaining a proper balance of superoxide within specific cellular compartments that is essential for normal cellular signaling and stress responses. Three forms of SOD exist in humans: copper and zinc containing SOD (CuZnSOD), manganese containing SOD (MnSOD) and extracellular SOD (ecSOD). Each of the three SOD proteins plays a unique physiological role based in part on its tissue distribution and sub cellular localization. For example CuZnSOD is generally found in the cytosol, but can also be localized in the nucleus under certain conditions. CuZnSOD protects proteins, lipids and nuclear DNA from oxidation. In contrast, MnSOD, an enzyme required for life in an oxygen atmosphere, is located specifically in the mitochondrial matrix and protects the respiratory machinery and mitochondrial DNA from oxidative damage. ecSOD is found both extracellularly and on the plasma membrane. Its expression is greatest in endothelial cells of blood vessels where its key role appears to be regulating superoxide interactions with nitric oxide. Superoxide and nitric oxide react to form peroxynitrite, a toxic species. This reaction decreases the bioavailability of nitric oxide so it can no longer function to maintain vascular tone and health. The balance of superoxide and nitric oxide is therefore vital for proper vasculature function. In disease processes, dysregulation of SODs results in a pathogenic imbalance of superoxide, leading to profound effects on cells and tissue. For example, aberrant structure or activity of CuZnSOD has been linked to the neurological disease amyotrophic lateral sclerosis (ALS) and developmental abnormalities seen in Down’s syndrome. Similarly, decreases in the function of MnSOD have been shown to play a role in carcinogenesis. Finally, cardiovascular disease is associated with poor vascular tone following lowered nitric oxide bioavailability. Decreased ecSOD function results in increased peroxynitrite formation that causes damage to the vasculature, thus accelerating cardiovascular disease. In summary, SODs are an essential group of enzymes that must be present at appropriate levels, structure, and locations to maintain a healthy balance of superoxide, necessary for development and disease prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, R. G., Balin, A. K., Reimer, R. J., Sohal, R. S., and Nations, C. (1988). Superoxide dismutase induces differentiation in microplasmodia of the slime mold Physarum polycephalum. Arch Biochem Biophys 261, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Ballinger, S. W., Patterson, C., Knight-Lozano, C. A., Burow, D. L., Conklin, C. A., Hu, Z., Reuf, J., Horaist, C., Lebovitz, R., Hunter, G. C., et al. (2002). Mitochondrial integrity and function in atherogenesis. Circulation 106, 544–549.

    Article  PubMed  CAS  Google Scholar 

  • Bravard, A., Cherbonnel-Lasserre, C., Reillaudou, M., Beaumatin, J., Dutrillaux, B., and Luccioni, C. (1998). Modifications of the antioxidant enzymes in relation to chromosome imbalances in human melanoma cell lines. Melanoma Res 8, 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Bravard, A., Sabatier, L., Hoffschir, F., Ricoul, M., Luccioni, C., and Dutrillaux, B. (1992). SOD2: a new type of tumor-suppressor gene? Int J Cancer 51, 476–480.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K. A., Chu, Y., Lund, D. D., Heistad, D. D., and Faraci, F. M. (2006). Gene transfer of extracellular superoxide dismutase protects against vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 290, H2600–2605.

    Article  PubMed  CAS  Google Scholar 

  • Bruijn, L. I., Becher, M. W., Lee, M. K., Anderson, K. L., Jenkins, N. A., Copeland, N. G., Sisodia, S. S., Rothstein, J. D., Borchelt, D. R., Price, D. L., and Cleveland, D. W. (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. (1977). Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180, 248–257.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L. Y., Slot, J. W., Geuze, H. J., and Crapo, J. D. (1988). Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes. J Cell Biol 107, 2169–2179.

    Article  PubMed  CAS  Google Scholar 

  • Church, S. L., Grant, J. W., Ridnour, L. A., Oberley, L. W., Swanson, P. E., Meltzer, P. S., and Trent, J. M. (1993). Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci USA 90, 3113–3117.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, J. P., Church, D. F., and Pryor, W. A. (1987). The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22, 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Crapo, J. D., Oury, T., Rabouille, C., Slot, J. W., and Chang, L. Y. (1992). Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA 89, 10405–10409.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, J. J., Weydert, C., Hinkhouse, M. M., Ritchie, J., Domann, F. E., Spitz, D., and Oberley, L. W. (2003). The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res 63, 1297–1303.

    PubMed  CAS  Google Scholar 

  • Dal Canto, M. C., and Gurney, M. E. (1994). Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145, 1271–1279.

    PubMed  CAS  Google Scholar 

  • Delabar, J. M., Sinet, P. M., Chadefaux, B., Nicole, A., Gegonne, A., Stehelin, D., Fridlansky, F., Creau-Goldberg, N., Turleau, C., and de Grouchy, J. (1987). Submicroscopic duplication of chromosome 21 and trisomy 21 phenotype (Down syndrome). Hum Genet 76, 225–229.

    Article  PubMed  CAS  Google Scholar 

  • Dieber-Rotheneder, M., Puhl, H., Waeg, G., Striegl, G., and Esterbauer, H. (1991). Effect of oral supplementation with D-alpha-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation. J Lipid Res 32, 1325–1332.

    PubMed  CAS  Google Scholar 

  • Elchuri, S., Oberley, T. D., Qi, W., Eisenstein, R. S., Jackson Roberts, L., Van Remmen, H., Epstein, C. J., and Huang, T. T. (2005). CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24, 367–380.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer, H., Jurgens, G., Quehenberger, O., and Koller, E. (1987). Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 28, 495–509.

    PubMed  CAS  Google Scholar 

  • Fennell, J. P., Brosnan, M. J., Frater, A. J., Hamilton, C. A., Alexander, M. Y., Nicklin, S. A., Heistad, D. D., Baker, A. H., and Dominiczak, A. F. (2002). Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene Ther 9, 110–117.

    Article  PubMed  CAS  Google Scholar 

  • Gamez, J., Corbera-Bellalta, M., Nogales, G., Raguer, N., Garcia-Arumi, E., Badia-Canto, M., Llado-Carbo, E., and Alvarez-Sabin, J. (2006). Mutational analysis of the Cu/Zn superoxide dismutase gene in a Catalan ALS population: should all sporadic ALS cases also be screened for SOD1? J Neurol Sci 247, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Graham, A., Hogg, N., Kalyanaraman, B., O’Leary, V., Darley-Usmar, V., and Moncada, S. (1993). Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett 330, 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Griendling, K. K., Sorescu, D., and Ushio-Fukai, M. (2000). NAD(P) H oxidase: role in cardiovascular biology and disease. Circ Res 86, 494–501.

    PubMed  CAS  Google Scholar 

  • Griffith, R. L., Virella, G. T., Stevenson, H. C., and Lopes-Virella, M. F. (1988). Low density lipoprotein metabolism by human macrophages activated with low density lipoprotein immune complexes. A possible mechanism of foam cell formation. J Exp Med 168, 1041–1059.

    Article  PubMed  CAS  Google Scholar 

  • Guegan, C., Vila, M., Rosoklija, G., Hays, A. P., and Przedborski, S. (2001). Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci 21, 6569–6576.

    PubMed  CAS  Google Scholar 

  • Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., Caliendo, J., Hentati, A., Kwon, Y. W., Deng, H. X., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  • Han, D., Williams, E., and Cadenas, E. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353, 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Hansberg, W., de Groot, H., and Sies, H. (1993). Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic Biol Med 14, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Saavedra, D., and McCord, J. M. (2003). Paradoxical effects of thiol reagents on Jurkat cells and a new thiol-sensitive mutant form of human mitochondrial superoxide dismutase. Cancer Res 63, 159–163.

    PubMed  CAS  Google Scholar 

  • Hitchler, M. J., Wikainapakul, K., Yu, L., Powers, K., Attatippaholkun, W., and Domann, F. E. (2006). Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics 1, 163–171.

    Article  PubMed  Google Scholar 

  • Hodge, D. R., Peng, B., Pompeia, C., Thomas, S., Cho, E., Clausen, P. A., Marquez, V. E., and Farrar, W. L. (2005). Epigenetic silencing of manganese superoxide dismutase (SOD-2) in KAS 6/1 human multiple myeloma cells increases cell proliferation. Cancer Biol Ther 4, 585–592.

    PubMed  CAS  Google Scholar 

  • Hsu, J. L., Hsieh, Y., Tu, C., O’Connor, D., Nick, H. S., and Silverman, D. N. (1996). Catalytic properties of human manganese superoxide dismutase. J Biol Chem 271, 17687–17691.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Peng, J., Oberley, L. W., and Domann, F. E. (1997). Transcriptional inhibition of manganese superoxide dismutase (SOD2) gene expression by DNA methylation of the 5’¢ CpG island. Free Radic Biol Med 23, 314–320.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., He, T., and Domann, F. E. (1999). Decreased expression of manganese superoxide dismutase in transformed cells is associated with increased cytosine methylation of the SOD2 gene. DNA Cell Biol 18, 643–652.

    Article  PubMed  CAS  Google Scholar 

  • Huie, R. E., and Padmaja, S. (1993). The reaction of NO with superoxide. Free Radic Res Commun 18, 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Huret, J. L., Delabar, J. M., Marlhens, F., Aurias, A., Nicole, A., Berthier, M., Tanzer, J., and Sinet, P. M. (1987). Down syndrome with duplication of a region of chromosome 21 containing the CuZn superoxide dismutase gene without detectable karyotypic abnormality. Hum Genet 75, 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Jung, C., Higgins, C. M., and Xu, Z. (2002). A quantitative histochemical assay for activities of mitochondrial electron transport chain complexes in mouse spinal cord sections. J Neurosci Methods 114, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Jung, O., Marklund, S. L., Geiger, H., Pedrazzini, T., Busse, R., and Brandes, R. P. (2003). Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ Res 93, 622–629.

    Article  PubMed  CAS  Google Scholar 

  • Keaney, J. F., Jr. (2000). Atherosclerosis: from lesion formation to plaque activation and endothelial dysfunction. Mol Aspects Med 21, 99–166.

    Article  PubMed  CAS  Google Scholar 

  • Klimov, A. N., Denisenko, A. D., Popov, A. V., Nagornev, V. A., Pleskov, V. M., Vinogradov, A. G., Denisenko, T. V., Magracheva, E., Kheifes, G. M., and Kuznetzov, A. S. (1985). Lipoprotein-antibody immune complexes. Their catabolism and role in foam cell formation. Atherosclerosis 58, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E. W., Zwacka, R., Engelhardt, J. F., Davidson, B. L., Domann, F. E., Jr., Yan, T., and Oberley, L. W. (1997). Adenovirus-mediated manganese superoxide dismutase gene transfer to hamster cheek pouch carcinoma cells. Cancer Res 57, 5550–5556.

    PubMed  CAS  Google Scholar 

  • Leveque, V. J., Vance, C. K., Nick, H. S., and Silverman, D. N. (2001). Redox properties of human manganese superoxide dismutase and active-site mutants. Biochemistry 40, 10586–10591.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H., et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11, 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Liang, B. C., Ross, D. A., Greenberg, H. S., Meltzer, P. S., and Trent, J. M. (1994). Evidence of allelic imbalance of chromosome 6 in human astrocytomas. Neurology 44, 533–536.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Cox, S. R., Morita, T., and Kourembanas, S. (1995). Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’¢ enhancer. Circ Res 77, 638–643.

    PubMed  CAS  Google Scholar 

  • Madamanchi, N. R., and Runge, M. S. (2007). Mitochondrial dysfunction in atherosclerosis. Circ Res 100, 460–473.

    Article  PubMed  CAS  Google Scholar 

  • Marklund, S. L. (1982). Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A 79, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  • McCord, J. M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  • McCord, J. M., Keele, B. B., Jr., and Fridovich, I. (1971). An enzyme-based theory of obligate anaero biosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A 68, 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  • Oberley, T. D., Oberley, L. W., Slattery, A. F., Lauchner, L. J., and Elwell, J. H. (1990). Immunohistochemical localization of antioxidant enzymes in adult Syrian hamster tissues and during kidney development. Am J Pathol 137, 199–214.

    PubMed  CAS  Google Scholar 

  • Ough, M., Lewis, A., Zhang, Y., Hinkhouse, M. M., Ritchie, J. M., Oberley, L. W., and Cullen, J. J. (2004). Inhibition of cell growth by overexpression of manganese superoxide dismutase (MnSOD) in human pancreatic carcinoma. Free Radic Res 38, 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  • Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., and Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3, 187–197.

    Article  PubMed  CAS  Google Scholar 

  • Parums, D. V. (1990). Inflammatory mediators in atherosclerosis. Biochem Soc Trans 18, 1069–1072.

    PubMed  CAS  Google Scholar 

  • Pick, M., Rabani, J., Yost, F., and Fridovich, I. (1974). The catalytic mechanism of the manganese-containing superoxide dismutase of Escherichia coli studied by pulse radiolysis. J Am Chem Soc 96, 7329–7333.

    Article  PubMed  CAS  Google Scholar 

  • Pittschieler, K., Lebenthal, E., Bujanover, Y., and Petell, J. K. (1991). Levels of Cu-Zn and Mn superoxide dismutases in rat liver during development. Gastroenterology 100, 1062–1068.

    PubMed  CAS  Google Scholar 

  • Ralph, G. S., Radcliffe, P. A., Day, D. M., Carthy, J. M., Leroux, M. A., Lee, D. C., Wong, L. F., Bilsland, L. G., Greensmith, L., Kingsman, S. M., et al. (2005). Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11, 429–433.

    Article  PubMed  CAS  Google Scholar 

  • Raoul, C., Abbas-Terki, T., Bensadoun, J. C., Guillot, S., Haase, G., Szulc, J., Henderson, C. E., and Aebischer, P. (2005). Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11, 423–428.

    Article  PubMed  CAS  Google Scholar 

  • Reaume, A. G., Elliott, J. L., Hoffman, E. K., Kowall, N. W., Ferrante, R. J., Siwek, D. F., Wilcox, H. M., Flood, D. G., Beal, M. F., Brown, R. H., Jr., et al. (1996). Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13, 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Richard, S., Campello, C., Taillandier, L., Parker, F., and Resche, F. (1998). Haemangioblastoma of the central nervous system in von Hippel-Lindau disease. French VHL Study Group. J Intern Med 243, 547–553.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J. P., Deng, H. X., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R. (1999). Atherosclerosis–an inflammatory disease. N Engl J Med 340, 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Salvemini, D., Wang, Z. Q., Zweier, J. L., Samouilov, A., Macarthur, H., Misko, T. P., Currie, M. G., Cuzzocrea, S., Sikorski, J. A., and Riley, D. P. (1999). A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 286, 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Slot, J. W., Geuze, H. J., Freeman, B. A., and Crapo, J. D. (1986). Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab Invest 55, 363–371.

    PubMed  CAS  Google Scholar 

  • Soini, Y., Vakkala, M., Kahlos, K., Paakko, P., and Kinnula, V. (2001). MnSOD expression is less frequent in tumour cells of invasive breast carcinomas than in in situ carcinomas or non-neoplastic breast epithelial cells. J Pathol 195, 156–162.

    Article  PubMed  CAS  Google Scholar 

  • St Clair, D. K., Oberley, T. D., Muse, K. E., and St Clair, W. H. (1994). Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic Biol Med 16, 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Stathopulos, P. B., Rumfeldt, J. A., Scholz, G. A., Irani, R. A., Frey, H. E., Hallewell, R. A., Lepock, J. R., and Meiering, E. M. (2003). Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Proc Natl Acad Sci U S A 100, 7021–7026.

    Article  PubMed  CAS  Google Scholar 

  • Stralin, P., Karlsson, K., Johansson, B. O., and Marklund, S. L. (1995). The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15, 2032–2036.

    PubMed  CAS  Google Scholar 

  • Takeuchi, H., Kobayashi, Y., Ishigaki, S., Doyu, M., and Sobue, G. (2002). Mitochondrial localization of mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of familial amyotrophic lateral sclerosis. J Biol Chem 277, 50966–50972.

    Article  PubMed  CAS  Google Scholar 

  • Talks, K. L., Turley, H., Gatter, K. C., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., and Harris, A. L. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157, 411–421.

    PubMed  CAS  Google Scholar 

  • Turrens, J. F., and Boveris, A. (1980). Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191, 421–427.

    PubMed  CAS  Google Scholar 

  • Urushitani, M., Sik, A., Sakurai, T., Nukina, N., Takahashi, R., and Julien, J. P. (2006). Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9, 108–118.

    Article  PubMed  CAS  Google Scholar 

  • Van Remmen, H., Ikeno, Y., Hamilton, M., Pahlavani, M., Wolf, N., Thorpe, S. R., Alderson, N. L., Baynes, J. W., Epstein, C. J., Huang, T. T., et al. (2003). Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16, 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, B. A., Buettner, G. R., and Burns, C. P. (1994). Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry 33, 4449–4453.

    Article  PubMed  CAS  Google Scholar 

  • Walker, G. J., Palmer, J. M., Walters, M. K., Nancarrow, D. J., Parsons, P. G., and Hayward, N. K. (1994). Simple tandem repeat allelic deletions confirm the preferential loss of distal chromosome 6q in melanoma. Int J Cancer 58, 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. L., and Semenza, G. L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268, 21513–21518.

    PubMed  CAS  Google Scholar 

  • Wang, M., Kirk, J. S., Venkataraman, S., Domann, F. E., Zhang, H. J., Schafer, F. Q., Flanagan, S. W., Weydert, C. J., Spitz, D. R., Buettner, G. R., and Oberley, L. W. (2005). Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Oncogene 24, 8154–8166.

    PubMed  CAS  Google Scholar 

  • Weydert, C., Roling, B., Liu, J., Hinkhouse, M. M., Ritchie, J. M., Oberley, L. W., and Cullen, J. J. (2003). Suppression of the malignant phenotype in human pancreatic cancer cells by the overexpression of manganese superoxide dismutase. Mol Cancer Ther 2, 361–369.

    PubMed  CAS  Google Scholar 

  • Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., Sisodia, S. S., Cleveland, D. W., and Price, D. L. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Porntadavity, S., and St Clair, D. K. (2002). Transcriptional regulation of the human manganese superoxide dismutase gene: the role of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Biochem J 362, 401–412.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. J., Yan, T., Oberley, T. D., and Oberley, L. W. (1999). Comparison of effects of two polymorphic variants of manganese superoxide dismutase on human breast MCF-7 cancer cell phenotype. Cancer Res 59, 6276–6283.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Yu, L., and Yu, C. A. (1998). Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 273, 33972–33976.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, W., Oberley, L. W., Oberley, T. D., and St Clair, D. K. (1997). Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene 14, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza, G. L., and Simons, J. W. (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59, 5830–5835.

    PubMed  CAS  Google Scholar 

  • Zimmerman, M. C., Oberley, L. W., and Flanagan, S. W. (2007). Mutant SOD1-induced neuronal toxicity is mediated by increased mitochondrial superoxide levels. J Neurochem doi:10.1111/j.1471–4159.2007.04502.x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Powers, K.M., Oberley, L.W., Domann, F.E. (2008). The Adventures of Superoxide Dismutase in Health and Disease: Superoxide in the Balance. In: Valacchi, G., Davis, P.A. (eds) Oxidants in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8399-0_9

Download citation

Publish with us

Policies and ethics

Navigation