A Quantum Chemical Approach to Free Energy Calculation for Chemical Reactions in Condensed System: Combination of a Quantum Chemical Method with a Theory of Statistical Mechanics

  • Chapter
  • First Online:
Solvation Effects on Molecules and Biomolecules

Abstract

A recent development to compute free energy changes associated with chemical processes in condensed phase has been reviewed. The methodology is based on the hybrid quantum mechanical/molecular mechanical (QM/MM) approach combined with the novel theory of solutions, where the electronic structure calculation in the QM subsystem is conducted by the Kohn–Sham density functional theory (KS-DFT) utilizing the real-space grids to represent the one-electron orbitals, while the distribution functions for MM molecules needed to compute the free energy change of interest are constructed in terms of the QM/MM interaction energies. The following sections are devoted to the overview of the existing methodologies for the free energy calculation for chemical event and to the detailed description of the real-space-based DFT as well as the theory of solutions. Next we present a theory to combine the quantum mechanics with the statistical mechanics, where an emphasis will be placed on the treatment of the many-body interaction inherent with the quantum mechanical object. Finally, the several applications of the methodology to the solution system are presented to demonstrate the accuracy and efficiency of the method

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 319.93
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 406.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The reduced temperature of 600 K for TIP4P model is estimated as T r = 1.07.

  2. 2.

    The International Association for the Properties of Water and Steam, 1997, IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, Erlangen, Germany.

References

  1. Berne BJ, Ciccotti G, Coker DF (eds) (1998) Classical and quantum dynamics in condensed phase simulations, World Scientific, Singapore

    Google Scholar 

  2. Szabo A, Ostlund NS (1982) Modern quantum chemistry, Macmillan, New York

    Google Scholar 

  3. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, Oxford University Press, Oxford

    Google Scholar 

  4. Kohn W, Sham L (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  5. Car R, Parrinello M (1985) Phys Rev Lett 55:2471

    Article  CAS  Google Scholar 

  6. Gao J, Thompson MA (eds) (1998) Combined quantum mechanical and molecular mechanical methods, American Chemical Society, Washington DC

    Google Scholar 

  7. Wu SY, Jayanthi CS (2002) Phys Rep 358:1

    Article  Google Scholar 

  8. Yang W (1991) Phys Rev Lett 66:1438

    Article  CAS  Google Scholar 

  9. Prodan E, Kohn W (2005) PNAS 102:11635

    Article  CAS  Google Scholar 

  10. Zwanzig RW (1954) J Chem Phys 22:1420

    Article  CAS  Google Scholar 

  11. Chandler D, Andersen HC (1972) J Chem Phys 57:1930

    Article  CAS  Google Scholar 

  12. Hirata F, Rossky PJ (1981) Chem Phys Lett 83:329

    Article  CAS  Google Scholar 

  13. Hansen JP, McDonald IR (1986) Theory of simple liquids, 2nd edn. Academic Press, London

    Google Scholar 

  14. Matubayasi N, Nakahara M (2000) J Chem Phys 113:6070

    Article  CAS  Google Scholar 

  15. Matubayasi N, Nakahara M (2002) J Chem Phys 117:3605; erratum (2003) J Chem Phys 118:2446

    Article  CAS  Google Scholar 

  16. Matubayasi N, Nakahara M (2003) J Chem Phys 119:9686

    Article  CAS  Google Scholar 

  17. Tomasi J, Persico M (1994) Chem Rev 94:2027

    Article  CAS  Google Scholar 

  18. Ten-no S, Hirata F, Kato S (1994) J Chem Phys 110:7443

    Article  Google Scholar 

  19. Takahashi H, Matubayasi N, Nakahara M, Nitta T (2004) J Chem Phys 121:3989

    Article  CAS  Google Scholar 

  20. Beck TL (2000) Rev Mod Phys 72:1041

    Article  CAS  Google Scholar 

  21. Hirose K, Ono T, Fujimoto Y, Tsukamoto S (2005) First-principles calculations in real-space formalism, Imperial College Press, London

    Google Scholar 

  22. Thomas LH (1927) Proc Camb Phil Soc 23:542

    Article  CAS  Google Scholar 

  23. Fermi E (1927) Rend. Accad. Lincei, 6:602

    CAS  Google Scholar 

  24. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  25. Slater JC (1951) Phys Rev 81:385

    Article  CAS  Google Scholar 

  26. Dirac PAM (1930) Proc Camb Phil Soc 26:376

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  28. Colle R, Salvetti O (1975) Theor Chim Acta 37:329

    Article  CAS  Google Scholar 

  29. Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425

    Article  CAS  Google Scholar 

  30. Chelikowsky JR, Troullier N, Saad Y (1994) Phys Rev Lett 72:1240

    Article  CAS  Google Scholar 

  31. Chelikowsky JR, Troullier N, Wu K, Saad Y (1994) Phys Rev B 50:11355

    Article  CAS  Google Scholar 

  32. **g X, Troullier N, Dean D, Binggeli N, Chelikowsky JR, Wu K, Saad Y (1994) Phys Rev B 50:12234

    Article  CAS  Google Scholar 

  33. Barnett RN, Landman U (1993) Phys Rev B 48:2081

    Article  CAS  Google Scholar 

  34. Becke AD (1988) J Chem Phys 88:2547

    Article  CAS  Google Scholar 

  35. Ono T, Hirose K (1999) Phys Rev Lett 82:5016

    Article  CAS  Google Scholar 

  36. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  37. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  38. Hori T, Takahashi H, Nitta T (2005) J Theor Comp Chem 4:867

    Article  CAS  Google Scholar 

  39. Ruiz-Lopez MF (ed) (2003) Combined QM/MM calculations in chemistry and biochemistry. J Mol Struct (THEOCHEM) 632: special issue

    Google Scholar 

  40. Takahashi H, Hori T, Hashimoto H, Nitta T (2001) J Comp Chem 22:1252

    Article  CAS  Google Scholar 

  41. Takahashi H, Hori T, Wakabayashi T, Nitta T (2001) J Phys Chem A 105:4351

    Article  CAS  Google Scholar 

  42. Allen MP, Tildesley DJ (1987) Computer simulation of liquids, Oxford University Press, Oxford

    Google Scholar 

  43. Frenkel D, Smit B (2002) Understanding molecular simulation, from algorithms to applications, 2nd edn. Academic Press, London

    Google Scholar 

  44. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Chem Phys Lett 222:529

    Article  CAS  Google Scholar 

  45. Resat H, Mezei M (1994) J Chem Phys 101:6126

    Article  CAS  Google Scholar 

  46. Zacharias M, Straatsma TP, McCammon JA (1994) J Chem Phys 100:9025

    Article  CAS  Google Scholar 

  47. Lu N, Singh JK, Kofke DA (2003) J Chem Phys 118:2977

    Article  CAS  Google Scholar 

  48. Shirts MR, Pande VS (2005) J Chem Phys 122:144107

    Article  Google Scholar 

  49. Matubayasi N, Reed LH, Levy RM (1994) J Phys Chem 98:10640

    Article  CAS  Google Scholar 

  50. Singer SJ, Chandler D (1985) Mol Phys 55:621

    Article  CAS  Google Scholar 

  51. Kovalenko A, Hirata F (1999) J Chem Phys 110:10095

    Article  CAS  Google Scholar 

  52. Kast SM (2001) Phys Chem Chem Phys 3:5087

    Article  CAS  Google Scholar 

  53. Freedman H, Truong TN (2003) Chem Phys Lett 381:362

    Article  CAS  Google Scholar 

  54. Freedman H, Truong TN (2004) J Chem Phys 121:12447

    Article  CAS  Google Scholar 

  55. Balbuena PB, Johnston KP, Rossky PJ (1995) J Phys Chem 99:1554

    Article  CAS  Google Scholar 

  56. Balbuena PB, Johnston KP, Rossky PJ (1996) J Phys Chem 100:2706

    Article  CAS  Google Scholar 

  57. Matubayasi N, Liang KK, Nakahara M (2006) J Chem Phys 124:154908

    Article  Google Scholar 

  58. Takahashi H, Hori T, Wakabayashi T, Nitta T (2000) Chem Lett 3:222

    Article  Google Scholar 

  59. Takahashi H, Hashimoto H, Nitta T (2003) J Chem Phys 119:7964

    Article  CAS  Google Scholar 

  60. Takahashi H, Takei S, Hori T, Nitta T (2003) J Mol Struct (THEOCHEM), 632:185

    Article  CAS  Google Scholar 

  61. Hori T, Takahashi H, Nitta T (2003) J Chem Phys 119:8492

    Article  CAS  Google Scholar 

  62. Hori T, Takahashi H, Nitta T (2003) J Comput Chem 24:209

    Article  CAS  Google Scholar 

  63. Takahashi H, Kawashima Y, Nitta T, Matubayasi N (2005) J Chem Phys 123:124504

    Article  Google Scholar 

  64. Takahashi H, Satou W, Hori T, Nitta T. (2005) J Chem Phys 122:044504

    Article  Google Scholar 

  65. Hori T, Takahashi H, Nakano M, Nitta T, Yang W (2005) Chem Phys Lett 419:240

    Article  Google Scholar 

  66. Hori T, Takahashi H, Furukawa S, Nakano M, Yang W (2007) J Phys Chem B 111:581

    Article  CAS  Google Scholar 

  67. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  68. Ewald P (1921) Ann Phys 64:253

    Article  Google Scholar 

  69. Andzelm J, Kölmel C, Klamt A (1995) J Chem Phys 103:9312

    Article  CAS  Google Scholar 

  70. Tortonda FR, Pascual-Ahuir JL, Silla E, Tuñón I, Ramírez F (1998) J Chem Phys 109:592

    Article  CAS  Google Scholar 

  71. Nagaoka M, Okuyama-Yoshida N, Yamabe T (1998) J Phys Chem A 102:8202

    Article  CAS  Google Scholar 

  72. Tuñón I, Silla E, Ruiz-López MF (2000) Chem Phys Lett 321:433

    Article  Google Scholar 

  73. Tuñón I, Silla E, Millot C, Martins-Costa MTC, Ruiz-López MF(1998) J Phys Chem A 102:8673

    Article  Google Scholar 

  74. Gaffney JS, Pierce RC, Friedman L (1977) J Am Chem Soc 99:4293

    Article  CAS  Google Scholar 

  75. Haberfield P (1980) J Chem Edu 57:346

    Article  CAS  Google Scholar 

  76. Wada G, Tamura E, Okina M, Nakamura M (1982) Bull Chem Soc Jpn 55:3064

    Article  CAS  Google Scholar 

  77. Frisch MJ et al (2002) Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Takahashi, H., Matubayasi, N., Nakano, M. (2008). A Quantum Chemical Approach to Free Energy Calculation for Chemical Reactions in Condensed System: Combination of a Quantum Chemical Method with a Theory of Statistical Mechanics. In: Canuto, S. (eds) Solvation Effects on Molecules and Biomolecules. Challenges and Advances in Computational Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8270-2_17

Download citation

Publish with us

Policies and ethics

Navigation