Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 1))

Abstract

With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or “gadofullerenes” are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivo T 1 -weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson SA, Lee KK, Frank JA (2006) Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest. Radiol. 41: 332-338.

    Article  Google Scholar 

  • Ashcroft JM, Hartman KB, Kissell KR, Mackeyev Y, Pheasant S, Young S, Van der Heide PAW, Mikos AG, Wilson LJ (2007) Single-molecule I2@US-tube nanocapsules: a new X-ray contrast-agent design. Adv. Mater. 19: 573-576.

    Article  Google Scholar 

  • Bolskar RD Alford JM (2003) Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem. Commun. 11: 1292-1293.

    Article  Google Scholar 

  • Bolskar RD, Benedetto AF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson LJ, Alford JM (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and per-mit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125: 5471-5478.

    Article  Google Scholar 

  • Brown G, Bailey SR, Novotny M, Carter R, Flahaut E, Coleman KS, Hutchison JL, Green MLH, Sloan J (2003) High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes. Appl. Phys. A 76: 457-462.

    Article  Google Scholar 

  • Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ (1999) In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Natl. Acad. Sci. USA 96: 5182-5187.

    Article  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99: 2293-2352.

    Article  Google Scholar 

  • Chai Y, Guo T, ** C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, Smalley RE (1991) Fullerenes with metals inside. J. Phys. Chem. 95: 7564-7568.

    Article  Google Scholar 

  • Chen YK, Chu A, Cook J, Green MLH, Harris PJF, Heesom R, Humphries M, Sloan J, Tsang SC, Turner JFC (1997) Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J. Mater. Chem. 7: 545-549.

    Article  Google Scholar 

  • Collidge TA, Thomson PC, Mark PB, Traynor JP, Jardine AG, Morris ST, Simpson K, Roditi GH (2007) Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology 245: 168-175.

    Article  Google Scholar 

  • Diener MD, Alford JM (1998) Isolation and properties of small-bandgap fullerenes. Nature 393: 668-671.

    Article  Google Scholar 

  • Diener MD, Bolskar RD, Alford JM (2002) Redox properties and purification of endohedral met-allofullerenes. In: Akasaka T, Nagase S (eds.) Endofullerenes: a new family of carbon clusters. Kluwer, Dordrecht, pp. 133-151.

    Google Scholar 

  • Diener MD, Alford JM, Kennel SJ, Mirzadeh S (2007) 212Pb@C60 and its water-soluble deriva-tives: synthesis, stability, and suitability for radioimmunotherapy. J. Am. Chem. Soc. 129: 5131-5138.

    Article  Google Scholar 

  • Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3: 1298-1320.

    Article  Google Scholar 

  • Edelson E (1991) Buckyball: the magic molecule. Pop. Sci. 239(August): 52-57, 87.

    Google Scholar 

  • Elliott B, Yu L, Echegoyen L (2005) A simple isomeric separation of D5h and Ih Sc3N@C80 by selective chemical oxidation. J. Am. Chem. Soc. 127: 10885-10888.

    Article  Google Scholar 

  • Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B, Ge Z, Gibson HW, Russ JL, Leonard AP, Duchamp JC, Dorn HC (2006) In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 240: 756-764.

    Article  Google Scholar 

  • Funasaka H, Sakurai K, Oda Y, Yamamoto K, Takahashi T (1995) Magnetic properties of Gd@ C82 metallofullerene. Chem. Phys. Lett. 232: 273-277.

    Article  Google Scholar 

  • Ge Z, Duchamp JC, Cai T, Gibson HW, Dorn HC (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J. Am. Chem. Soc. 127: 16292-16298.

    Article  Google Scholar 

  • Grobner T (2006) Gadolinium - a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial Transplant. 21: 1104-1108.

    Google Scholar 

  • Grobner T, Prischl FC (2007) Gadolinium and nephrogenic systemic fibrosis. Kidney Int. 72: 260-264.

    Article  Google Scholar 

  • Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL (2002) Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2: 1009-1013.

    Article  Google Scholar 

  • Hartman KB, Hamlin DK, Wilbur DS, Wilson LJ (2007) 211AtCl@US-tube nanocapsules: a new concept in radiotherapeutic-agent design. Small 3: 1496-1499.

    Article  Google Scholar 

  • Hartman KB, Laus S, Bolskar RD, Muthupillai R, Helm L, Tóth E, Merbach AE, Wilson LJ (2008) Gadonanotubes as ultra-sensitive pH-smart probes for magnetic resonance imaging. Nano Lett. 8: 415-419.

    Article  Google Scholar 

  • Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Tittel FK, Smalley RE (1985) Lanthanum com-plexes of spheroidal carbon shells. J. Am. Chem. Soc. 107: 7779-7780.

    Article  Google Scholar 

  • Idée JM, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam. Clin. Pharmacol. 20: 563-576.

    Article  Google Scholar 

  • Iezzi EB, Duchamp JC, Fletcher KR, Glass TE, Dorn HC (2002) Lutetium-based trimetallic nitride endohedral metallofullerenes: new contrast agents. Nano Lett. 2: 1187-1190.

    Article  Google Scholar 

  • Kato H, Suenaga K, Mikawa M, Okumura M, Miwa N, Yashiro A, Fujimura H, Mizuno A, Nishida Y, Kobayashi K, Shinohara H (2000) Syntheses and EELS characterization of water-soluble multi-hydroxyl Gd@C82 fullerenols. Chem. Phys. Lett. 324: 255-259.

    Article  Google Scholar 

  • Kato H, Kanazawa Y, Okumura M, Taninaka A, Yokawa T, Shinohara H (2003) Lanthanoid endohedral metallofullerenols for MRI contrast agents. J. Am. Chem. Soc. 125: 4391-4397.

    Article  Google Scholar 

  • Kissell KR, Hartman KB, Van der Heide PA, Wilson LJ (2006) Preparation of I2@SWNTs: synthesis and spectroscopic characterization of I2-loaded SWNTs. J. Phys. Chem. B 110: 17425-17429.

    Article  Google Scholar 

  • Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347: 354-358.

    Article  Google Scholar 

  • Krause M, Dunsch L (2005) Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength. Angew. Chem. Int. Ed. Engl. 44: 1557-1560.

    Article  Google Scholar 

  • Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem. Rev. 87: 901-927.

    Article  Google Scholar 

  • Laus S, Sitharaman B, Tóth É, Bolskar RD, Helm L, Asokan S, Wong MS, Wilson LJ, Merbach AE (2005) Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@ C60(OH)x and Gd@C60[C(COOH2)]10. J. Am. Chem. Soc. 127: 9368-9369.

    Article  Google Scholar 

  • Laus S, Sitharaman B, Tóth É, Bolskar RD, Helm L, Wilson LJ, Merbach AE (2007) Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J. Phys. Chem. C 111: 5633-5639.

    Article  Google Scholar 

  • Lu X, Li H, Sun B, Shi Z, Gu Z (2005) Selective reduction and extraction of Gd@C82 and Gd2@ C80 from soot and the chemical reaction of their anions. Carbon 43: 1546-1549.

    Article  Google Scholar 

  • Mackeyev YA, Marks JW, Rosenblum MG, Wilson LJ (2005) Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J. Phys. Chem. B 109: 5482-5484.

    Article  Google Scholar 

  • Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y, Miwa N, Shinohara H (2001) Paramagnetic water-soluble metallofullerene having the highest relaxivity for MRI contrast agents. Bioconj. Chem. 12: 510-514.

    Article  Google Scholar 

  • Miyamoto A, Okimoto H, Shinohara H, Shibamoto Y (2006) Development of water-soluble met-allofullerenes as X-ray contrast media. Eur. Radiol. 16: 1050-1053.

    Article  Google Scholar 

  • Nagase S, Kobayashi K, Akasaka T, Wakahara T (2000) Endohedral metallofullerenes: theory, electrochemistry, and chemical reactions. In: Kadish KM, Ruoff RS (eds.) Fullerenes: chem-istry, physics, and technology. Wiley, New York, pp. 395-436.

    Google Scholar 

  • Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chem-istry, biology, and nanoscience. Acc. Chem. Res. 36: 807-815.

    Google Scholar 

  • Okumura M, Mikawa M, Yokawa T, Kanazawa Y, Kato H, Shinohara H (2002) Evaluation of water-soluble metallofullerenes as MRI contrast agents. Acad. Radiol. 9: S495-S497.

    Article  Google Scholar 

  • Qingnuan L, Yan X, **aodong Z, Ruili L, Gieqie D, **aoguang S, Shaoliang C, Wenxin L (2002) Preparation of 99 mTc-C60(OH)x and its biodistribution studies. Nucl. Med. Biol. 29: 707-710.

    Article  Google Scholar 

  • Qu L, Cao W, **ng G, Zhang J, Yuan H, Tang J, Cheng Y, Zhang B, Zhao Y, Lei H (2006) Study of rare earth encapsulated carbon nanomolecules for biomedical uses. J. Alloys Compd. 408-412: 400-404.

    Google Scholar 

  • Raebiger JW, Bolskar RD (2008) Improved production and separation processes for gadolinium metallofullerenes. J. Phys. Chem. C 112: 6605-6612.

    Article  Google Scholar 

  • Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 97: 3379-3383.

    Article  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fuller-enes. Nano Lett. 4: 1881-1887.

    Article  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett. 161: 135-142.

    Article  Google Scholar 

  • Shinohara H (2000) Endohedral metallofullerenes. Rep. Prog. Phys. 63: 843-892.

    Article  Google Scholar 

  • Shu CY, Gan LH, Wang CR, Pei XL, Han HB (2006) Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon 44: 496-500.

    Article  Google Scholar 

  • Shu CY, Zhang EY, **ang JF et al. (2006) Aggregation studies of the water-soluble gadofullerene magnetic resonance imaging contrast agent: [Gd@C82O6(OH)16(NHCH2CH2COOH)8]x. J. Phys. Chem. B 110: 15597-15601.

    Article  Google Scholar 

  • Shukla RB, Kumar K, Weber R, Zhang X, Tweedle M (1997) Alteration of electronic relaxation in MR contrast agents through de-novo ligand design. Acta Radiol Suppl. 38(S412): 121-123.

    Google Scholar 

  • Sitharaman B, Bolskar RD, Rusakova I, Wilson LJ (2004) Gd@C60[C(COOH)2]10 and Gd@ C60(OH)x: Nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett. 4: 2373-2378.

    Article  Google Scholar 

  • Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tóth E, Helm L, Merbach AE, Wilson LJ (2005) Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 31: 3915-3917.

    Article  Google Scholar 

  • Sitharaman B, Wilson LJ (2006) Gadonanotubes as new high-performance MRI contrast agents. Int. J. Nanomed. 1: 291-295.

    Google Scholar 

  • Sitharaman B, Tran LA, Pham QP, Bolskar RD, Muthupillai R, Flamm SD, Mikos AG, Wilson LJ (2007) Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Mol. Imag. 2: 139-146.

    Article  Google Scholar 

  • Sloan J, Cook J, Green MLH, Hutchison JL, Tenne R (1997) Crystallization inside fullerene related structures. J. Mater. Chem. 7: 1089-1095.

    Article  Google Scholar 

  • Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401: 55-57.

    Article  Google Scholar 

  • Stevenson S, Stephen RR, Amos TM, Cadorette VR, Reid JE, Phillips JP (2005) Synthesis and purification of a metallic nitride fullerene bisadduct: exploring the reactivity of Gd3N@C80. J. Am. Chem. Soc. 127: 12776-12777.

    Article  Google Scholar 

  • Stevenson S, Harich K, Yu H, Stephen RR, Heaps D, Coumbe C, Phillips JP (2006)

    Google Scholar 

  • Nonchromatographic “Stir and Filter Approach” (SAFA) for Isolating Sc3N@C80 metallofullerenes. J. Am. Chem. Soc. 128: 8829-8835.

    Google Scholar 

  • Sun B, Gu Z (2002) Solvent-dependent anion studies on enrichment of metallofullerene. Chem. Lett. 31: 1164-1165.

    Article  Google Scholar 

  • Thrash TP, Cagle DW, Alford JM, Wright K, Ehrhardt GJ, Mirzadeh S, Wilson LJ (1999) Toward fullerene-based radiopharmaceuticals: high-yield neutron activation of endohedral 165Ho met-allofullerenes. Chem. Phys. Lett. 308: 329-336.

    Article  Google Scholar 

  • Tóth É, Helm L, Merbach AE (2001) Relaxivity of Gadolinium(III) Complexes: theory and mechanism. In: Tóth É, Merbach AE (eds.) The chemistry of contrast agents in medical mag-netic resonance imaging. Wiley, Chichester, pp. 45-119.

    Google Scholar 

  • Tóth É, Bolskar RD, Borel A, González G, Helm L, Merbach AE, Sitharaman B, Wilson LJ (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc. 127: 799-805.

    Article  Google Scholar 

  • Tsuchiya T, Wakahara T, Shirakura S, Maeda Y, Akasaka T, Kobayashi K, Nagase S, Kato T, Kadish KM (2004) Reduction of endohedral metallofullerenes: a convenient method for isola-tion. Chem. Mater. 16: 4343-4346.

    Article  Google Scholar 

  • Tsuchiya T, Wakahara T, Lian Y, Maeda Y, Akasaka T, Kato T, Mizorogi N, Nagase S (2006) Selective extraction and purification of endohedral metallofullerene from carbon soot. J. Phys. Chem. B 110: 22517-22520.

    Article  Google Scholar 

  • Tsuchiya T, Sato K, Kurihara H, Wakahara T, Nakahodo T, Maeda Y, Akasaka T, Ohkubo K, Fukuzumi S, Kato T, Mizorogi N, Kobayashi K, Nagase S (2006) Host-guest complexation of endohedral metallofullerene with azacrown ether and its application. J. Am. Chem. Soc. 128: 6699-6703.

    Article  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45: 1891-1898.

    Article  Google Scholar 

  • Weiss FD, Elkind JL, O’Brien SC, Curl RF, Smalley RE (1988) Photophysics of metal complexes of spheroidal carbon shells. J. Am. Chem. Soc. 110: 4464-4465.

    Article  Google Scholar 

  • Wilson LJ (1999) Medical applications of fullerenes and metallofullerenes. Electrochem. Soc. Interface 8: 24-28.

    Google Scholar 

  • Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Metallofullerene drug design. Coord. Chem. Rev. 190-192: 199-207.

    Google Scholar 

  • Wilson SR, MacFarland D, Zhou Z, Zhang J, Shukla R (2007) Commercial development of tri-metasphere metallofullerene MRI contrast agents. Abstract 1127: 211th Meeting of The Electrochemical Society, Chicago, IL, May 6-10.

    Google Scholar 

  • **ng G, Zhang J, Zhao Y, Tang J, Zhang B, Gao X, Yuan H, Qu L, Cao W, Chai Z, Ibrahim K, Su R (2004) Influences of structural properties on stability of fullerenols. J. Phys. Chem. B 108: 11473-11479.

    Article  Google Scholar 

  • Xu JY, Li QN, Li JG, Ran TC, Wu SW, Song WM, Chen SL, Li WX (2007) Biodistribution of 99 mTc-C60(OH)x in Sprague-Dawley rats after intratracheal instillation. Carbon 45: 1865-1870.

    Article  Google Scholar 

  • Zhang S, Sun D, Li X, Pei F, Liu S (1997) Synthesis and solvent enhanced relaxation property of water-soluble endohedral metallofullerenes. Fullerene Sci. Tech. 5: 1635-1643.

    Google Scholar 

  • Zhang J, Liu K, **ng G, Ren T, Wang S (2007) Synthesis and in vivo study of metallofullerene based MRI contrast agent. J. Radioanal. Nucl. Chem. 272: 605-609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Bolskar, R.D. (2008). Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents. In: Cataldo, F., Da Ros, T. (eds) Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Carbon Materials: Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6845-4_8

Download citation

Publish with us

Policies and ethics

Navigation