Fluorometric Methods to Measure Bioavailable and Total Heme

  • Protocol
  • First Online:
Iron Metabolism

Abstract

Heme b (iron protoporphyrin IX) is an essential but potentially cytotoxic cofactor, signaling molecule, and nutritional source of iron. Its importance in cell biology and metabolism is underscored by the fact that numerous diseases, including various cancers, neurodegenerative disorders, infectious diseases, anemias, and porphyrias, are associated with the dysregulation of heme synthesis, degradation, trafficking, and/or transport. Consequently, methods to measure, image, and quantify heme in cells are required to better understand the physiology and pathophysiology of heme. Herein, we describe fluorescence-based protocols to probe heme bioavailability and trafficking dynamics using genetically encoded fluorescent heme sensors in combination with various modalities, such as confocal microscopy, flow cytometry, and microplate readers. Additionally, we describe a protocol for measuring total heme and its precursor protoporphyrin IX using a fluorometric assay that exploits porphyrin fluorescence. Together, the methods described enable the monitoring of total and bioavailable heme to study heme homeostatic mechanisms in virtually any cell type and organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddi AR, Hamza I (2016) Heme mobilization in animals: a metallolipid’s journey. Acc Chem Res 49:1104–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Donegan RK, Moore CM, Hanna DA, Reddi AR (2019) Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med 133:88–100

    Article  CAS  PubMed  Google Scholar 

  3. Chambers IG, Willoughby MM, Hamza I, Reddi AR (2021) One ring to bring them all and in the darkness bind them: the trafficking of heme without deliverers. Biochim Biophys Acta, Mol Cell Res 1868:118881

    Article  CAS  Google Scholar 

  4. Hanna DA, Martinez-Guzman O, Reddi AR (2017) Heme gazing: illuminating eukaryotic heme trafficking, dynamics, and signaling with fluorescent heme sensors. Biochemistry 56:1815–1823

    Article  CAS  PubMed  Google Scholar 

  5. Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR et al (2020) From synthesis to utilization: the ins and outs of mitochondrial heme. Cells 9

    Google Scholar 

  6. Hopp MT, Schmalohr BF, Kuhl T, Detzel MS, Wissbrock A et al (2020) Heme determination and quantification methods and their suita-bility for practical applications and every-day-use. Anal Chem

    Google Scholar 

  7. Michener JK, Nielsen J, Smolke CD (2012) Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases. Proc Natl Acad Sci USA 109:19504–19509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sassa S (1976) Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells. J Exp Med 143:305–315

    Article  CAS  PubMed  Google Scholar 

  9. Hanna DA, Harvey RM, Martinez-Guzman O, Yuan X, Chandrasekharan B et al (2016) Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proc Natl Acad Sci USA 113:7539–7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leung GC, Fung SS, Gallio AE, Blore R, Alibhai D et al (2021) Unravelling the mechanisms controlling heme supply and demand. Proc Natl Acad Sci USA 118

    Google Scholar 

  11. Gallio AE, Fung SS, Cammack-Najera A, Hudson AJ, Raven EL (2021) Understanding the logistics for the distribution of heme in cells. JACS 1:1541–1555

    CAS  Google Scholar 

  12. Song Y, Yang M, Wegner SV, Zhao J, Zhu R et al (2015) A Genetically Encoded FRET Sensor for Intracellular Heme. ACS Chem Biol 10:1610–1615

    Article  CAS  PubMed  Google Scholar 

  13. Dastpeyman S, Godin R, Cosa G, English AM (2020) Quantifying heme-protein maturation from ratiometric fluorescence lifetime measurements on the single fluorophore in its GFP fusion. J Phys Chem A 124:746–754

    Article  CAS  PubMed  Google Scholar 

  14. Abshire JR, Rowlands CJ, Ganesan SM, So PT, Niles JC (2017) Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proc Natl Acad Sci USA 114:E2068–E2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan X, Rietzschel N, Kwon H, Walter Nuno AB, Hanna DA et al (2016) Regulation of intracellular heme trafficking revealed by subcellular reporters. Proc Natl Acad Sci USA 113:E5144–E5152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawai K, Hirayama T, Imai H, Murakami T, Inden M et al (2022) Molecular imaging of labile heme in living cells using a small molecule fluorescent probe. J Am Chem Soc 144:3793–3803

    Article  CAS  PubMed  Google Scholar 

  17. Xu S, Liu HW, Chen L, Yuan J, Liu Y et al (2020) Learning from artemisinin: bioinspired design of a reaction-based fluorescent probe for the selective sensing of labile heme in complex biosystems. J Am Chem Soc 142:2129–2133

    Article  CAS  PubMed  Google Scholar 

  18. Weissman Z, Pinsky M, Donegan RK, Reddi AR, Kornitzer D (2021) Using genetically encoded heme sensors to probe the mechanisms of heme uptake and homeostasis in Candida albicans. Cell Microbiol 23:e13282

    Article  CAS  PubMed  Google Scholar 

  19. Sweeny EA, Singh AB, Chakravarti R, Martinez-Guzman O, Saini A et al (2018) Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. J Biol Chem 293:14557–14568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun F, Zhao Z, Willoughby MM, Zhou Y, Shao Y, Kang J, Chen Y, Chen M, Yuan X, Hamza I, Reddi AR, Chen C (2022) HRG-9 homologues regulate haem trafficking from haem-enriched compartments. Nature 610:768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mestre-Fos S, Ito C, Moore CM, Reddi AR, Williams LD (2020) Human ribosomal G-quadruplexes regulate heme bioavailability. J Biol Chem 295:14855–14865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinez-Guzman O, Willoughby MM, Saini A, Dietz JV, Bohovych I et al (2020) Mitochondrial-nuclear heme trafficking in budding yeast is regulated by GTPases that control mitochondrial dynamics and ER contact sites. J Cell Sci 133

    Google Scholar 

  23. Hanna DA, Moore CM, Liu L, Yuan X, Dominic IM et al (2022) Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. J Biol Chem 298:101549

    Article  CAS  PubMed  Google Scholar 

  24. Hanna DA, Hu R, Kim H, Martinez-Guzman O, Torres MP et al (2018) Heme bioavailability and signaling in response to stress in yeast cells. J Biol Chem 293:12378–12393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Donegan RK, Fu Y, Copeland J, Idga S, Brown G et al (2022) Exogenously scavenged and endogenously synthesized heme are differentially utilized by mycobacterium tuberculosis. Microbiol Spectr:e0360422

    Google Scholar 

  26. Dietz JV, Willoughby MM, Piel RB 3rd, Ross TA, Bohovych I et al (2021) Mitochondrial contact site and cristae organizing system (MICOS) machinery supports heme biosynthesis by enabling optimal performance of ferrochelatase. Redox Biol 46:102125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Jiang Y, Paxman J, O’Laughlin R, Klepin S et al (2020) A programmable fate decision landscape underlies single-cell aging in yeast. Science 369:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gietz RD, Schiestl RH (1991) Applications of high efficiency lithium acetate trasformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263

    Article  CAS  PubMed  Google Scholar 

  29. Arosio P, Knowles TP, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garber Morales J, Holmes-Hampton GP, Miao R, Guo Y, Munck E et al (2010) Biophysical characterization of iron in mitochondria isolated from respiring and fermenting yeast. Biochemistry 49:5436–5444

    Article  CAS  PubMed  Google Scholar 

  31. Chien HC, Zur AA, Maurer TS, Yee SW, Tolsma J et al (2016) Rapid method to determine intracellular drug concentrations in cellular uptake assays: application to metformin in organic cation transporter 1-transfected human embryonic kidney 293 cells. Drug Metab Dispos 44:356–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants GM145350 and R01NS123168, a US National Science Foundation grant 1552791, and the Vasser-Woolley endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit R. Reddi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dominic, I.M. et al. (2024). Fluorometric Methods to Measure Bioavailable and Total Heme. In: Khalimonchuk, O. (eds) Iron Metabolism. Methods in Molecular Biology, vol 2839. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4043-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-4043-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-4042-5

  • Online ISBN: 978-1-0716-4043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation