Undesignable RNA Structure Identification via Rival Structure Generation and Structure Decomposition

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2024)

Abstract

RNA design is the search for a sequence or set of sequences that will fold into predefined structures, also known as the inverse problem of RNA folding. While numerous RNA design methods have been invented to find sequences capable of folding into a target structure, little attention has been given to the identification of undesignable structures according to the minimum free energy (\(\textrm{MFE}\)) criterion under the Turner model. In this paper, we address this gap by first introducing mathematical theorems outlining sufficient conditions for recognizing undesignable structures, then proposing efficient algorithms, guided by these theorems, to verify the undesignability of RNA structures. Through the application of these theorems and algorithms to the Eterna100 puzzles, we demonstrate the ability to efficiently establish that 15 of the puzzles indeed fall within the category of undesignable structures. In addition, we provide specific insights from the study of undesignability, in the hope that it will enable more understanding of RNA folding and RNA design.

Availability: Our source code is available at https://github.com/shanry/RNA-Undesign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 111.27
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We released those rival structures at https://github.com/shanry/RNA-Undesign/tree/main/data/results/rigend.

References

  1. Aguirre-Hernández, R., Hoos, H.H., Condon, A.: Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinform. 8(1), 1–16 (2007)

    Article  Google Scholar 

  2. Anderson-Lee, J., et al.: Principles for predicting RNA secondary structure design difficulty. J. Mol. Biol. 428(5), 748–757 (2016)

    Article  Google Scholar 

  3. Andronescu, M., Fejes, A.P., Hutter, F., Hoos, H.H., Condon, A.: A new algorithm for RNA secondary structure design. J. Mol. Biol. 336(3), 607–624 (2004)

    Article  Google Scholar 

  4. Bellaousov, S., Kayedkhordeh, M., Peterson, R.J., Mathews, D.H.: Accelerated RNA secondary structure design using preselected sequences for helices and loops. RNA 24(11), 1555–1567 (2018)

    Article  Google Scholar 

  5. Bonnet, É., Rzazewski, P., Sikora, F.: Designing RNA secondary structures is hard. J. Comput. Biol. 27(3), 302–316 (2020)

    Article  MathSciNet  Google Scholar 

  6. Crick, F.: Central dogma of molecular biology. Nature 227(5258), 561–563 (1970)

    Article  Google Scholar 

  7. Doudna, J.A., Cech, T.R.: The chemical repertoire of natural ribozymes. Nature 418(6894), 222–228 (2002)

    Article  Google Scholar 

  8. Garcia-Martin, J.A., Clote, P., Dotu, I.: RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design. J. Bioinform. Comput. Biol. 11(02), 1350001 (2013)

    Article  Google Scholar 

  9. Haleš, J., Maňuch, J., Ponty, Y., Stacho, L.: Combinatorial RNA design: designability and structure-approximating algorithm. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 231–246. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0_20

    Chapter  Google Scholar 

  10. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly 125(2), 167–188 (1994)

    Article  Google Scholar 

  11. Huang, L., et al.: LinearFold: linear-time approximate RNA folding by 5’-to-3’ dynamic programming and beam search. Bioinformatics 35(14), i295–i304 (2019). https://doi.org/10.1093/bioinformatics/btz375

  12. Koodli, R.V., Rudolfs, B., Wayment-Steele, H.K., Designers, E.S., Das, R.: Redesigning the EteRNA100 for the Vienna 2 folding engine. BioRxiv, pp. 2021–08 (2021)

    Google Scholar 

  13. Lorenz, R., et al.: ViennaRNA Package 2.0. Algorithms for Molecular Biology 6(1), 1 (2011)

    Google Scholar 

  14. Mathews, D., Sabina, J., Zuker, M., Turner., D.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)

    Google Scholar 

  15. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner, D.H.: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Nat. Acad. Sci. USA 101(19), 7287–7292 (2004)

    Google Scholar 

  16. Portela, F.: An unexpectedly effective Monte Carlo technique for the RNA inverse folding problem. BioRxiv, p. 345587 (2018)

    Google Scholar 

  17. Rubio-Largo, Á., Vanneschi, L., Castelli, M., Vega-Rodríguez, M.A.: Multiobjective metaheuristic to design RNA sequences. IEEE Trans. Evol. Comput. 23(1), 156–169 (2018)

    Article  Google Scholar 

  18. Serganov, A., Patel, D.J.: Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8(10), 776–790 (2007)

    Article  Google Scholar 

  19. Taneda, A.: MODENA: a multi-objective RNA inverse folding. In: Advances and Applications in Bioinformatics and Chemistry: AABC, vol. 4, p. 1 (2011)

    Google Scholar 

  20. Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38(suppl_1), D280–D282 (2010)

    Google Scholar 

  21. Ward, M., Courtney, E., Rivas, E.: Fitness Functions for RNA Structure Design. bioRxiv (2022)

    Google Scholar 

  22. Yao, H.T.: Local decomposition in RNA structural design. Ph.D. thesis, McGill University (Canada) (2021)

    Google Scholar 

  23. Yao, H.T., Chauve, C., Regnier, M., Ponty, Y.: Exponentially few RNA structures are designable. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. pp. 289–298 (2019)

    Google Scholar 

  24. Zadeh, J.N., Wolfe, B.R., Pierce, N.A.: Nucleic Acid Sequence Design via Efficient Ensemble Defect Optimization. J. Comput. Chem. 32(3), 439–452 (2010)

    Article  Google Scholar 

  25. Zhou, T., Dai, N., Li, S., Ward, M., Mathews, D.H., Huang, L.: RNA design via structure-aware multifrontier ensemble optimization. Bioinformatics 39(Supplement_1), i563–i571 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 331 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, T., Tang, W.Y., Mathews, D.H., Huang, L. (2024). Undesignable RNA Structure Identification via Rival Structure Generation and Structure Decomposition. In: Ma, J. (eds) Research in Computational Molecular Biology. RECOMB 2024. Lecture Notes in Computer Science, vol 14758. Springer, Cham. https://doi.org/10.1007/978-1-0716-3989-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3989-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-1-0716-3988-7

  • Online ISBN: 978-1-0716-3989-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation