Computing Robust Optimal Factories in Metabolic Reaction Networks

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14758))

  • 291 Accesses

Abstract

Perhaps the most fundamental model in synthetic and systems biology for inferring pathways in metabolic reaction networks is a metabolic factory: a system of reactions that starts from a set of source compounds and produces a set of target molecules, while conserving or not depleting intermediate metabolites. Finding a shortest factory—that minimizes a sum of real-valued weights on its reactions to infer the most likely pathway—is NP-complete. The current state-of-the-art for shortest factories solves a mixed-integer linear program with a major drawback: it requires the user to set a critical parameter, where too large a value can make optimal solutions infeasible, while too small a value can yield degenerate solutions due to numerical error.

We present the first robust algorithm for optimal factories that is both parameter-free (relieving the user from determining a parameter setting) and degeneracy-free (guaranteeing it finds an optimal nondegenerate solution). We also give for the first time a complete characterization of the graph-theoretic structure of shortest factories via cuts of hypergraphs that reveals two important classes of degenerate solutions which were overlooked and potentially output by the prior state-of-the-art. In addition we settle the relationship between the two established pathway models of hyperpaths and factories by proving that hyperpaths are actually a subclass of factories. Comprehensive experiments over all instances from the standard metabolic reaction databases in the literature demonstrate our algorithm is fast in practice, quickly finding optimal factories in large real-world networks containing thousands of reactions.

A preliminary implementation of our algorithm for robust optimal factories in a new tool called Freeia is available free for research use at http://freeia.cs.arizona.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 111.27
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acuña, V., Milreu, P.V., Cottret, L., et al.: Algorithms and complexity of enumerating minimal precursor sets in genome-wide metabolic networks. Bioinformatics 28(19), 2474–2483 (2012)

    Article  Google Scholar 

  2. Andrade, R., Wannagat, M., Klein, C.C., et al.: Enumeration of minimal stoichiometric precursor sets in metabolic networks. Alg. for Mol. Bio. 11(1) (2016)

    Google Scholar 

  3. Cottret, L., Frainay, C., Chazalviel, M., et al.: MetExplore: collaborative edition and exploration of metabolic networks. Nucleic Acids Research 46(W1), W495–W502 (2018)

    Google Scholar 

  4. Cottret, L., Vieira Milreu, P., Acuña, V., et al.: Enumerating precursor sets of target metabolites in a metabolic network. In: Proceedings of the 8th Workshop on Algorithms in Bioinformatics (WABI). pp. 233–244 (2008)

    Google Scholar 

  5. Dubland, J.A., Francis, G.A.: Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Frontiers in Cell and Dev. Bio. 3 (2015)

    Google Scholar 

  6. Italiano, G.F., Nanni, U.: Online maintenance of minimal directed hypergraphs. Department of Computer Science, Columbia University, Tech. rep. (1989)

    Google Scholar 

  7. Joshi-Tope, G., Gillespie, M., Vastrik, I., et al.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428-432 (2005)

    Article  Google Scholar 

  8. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS Comput. Biol. 5(5), e1000385 (2009)

    Article  MathSciNet  Google Scholar 

  9. Krieger, S.: Algorithmic Inference of Cellular Reaction Pathways and Protein Secondary Structure. PhD dissertation, Department of Computer Science, The University of Arizona (July 2022)

    Google Scholar 

  10. Krieger, S., Kececioglu, J.: Fast approximate shortest hyperpaths for inferring pathways in cell signaling hypergraphs. In: Proc. 21st ISCB Workshop on Algorithms in Bioinformatics (WABI). Leibniz Int. Proc. in Inf., vol. 201, pp. 1–20 (2021)

    Google Scholar 

  11. Krieger, S., Kececioglu, J.: Odinn: optimal minimum-hyperedge factories in metabolic networks with negative regulation, version 1.0. http://odinn.cs.arizona.edu (2021)

  12. Krieger, S., Kececioglu, J.: Computing optimal factories in metabolic networks with negative regulation. Bioinformatics, Proceedings of the 30th ISCB Conference on Intelligent Systems for Molecular Biology (ISMB) 38(Suppl_1), i369–i377 (2022)

    Google Scholar 

  13. Krieger, S., Kececioglu, J.: Heuristic shortest hyperpaths in cell signaling hypergraphs. Algorithms for Molecular Biology 17(1) (2022)

    Google Scholar 

  14. Krieger, S., Kececioglu, J.: Hhugin: hypergraph heuristic for general shortest source-sink hyperpaths, version 1.0. http://hhugin.cs.arizona.edu (2022)

  15. Krieger, S., Kececioglu, J.: Mmunin: integer-linear-programming-based cutting-plane algorithm for shortest source-sink hyperpaths, version 1.0. http://mmunin.cs.arizona.edu (2022)

  16. Krieger, S., Kececioglu, J.: Computing shortest hyperpaths for pathway inference in cellular reaction networks. In: Proc. of the 27th Conf. on Research in Computational Molecular Biology (RECOMB), Springer LNBI 13976. pp. 155–173 (2023)

    Google Scholar 

  17. Krieger, S., Kececioglu, J.: Shortest hyperpaths in directed hypergraphs for reaction pathway inference. J. Comput. Biol. 30(11), 1–28 (2023)

    Article  MathSciNet  Google Scholar 

  18. Krieger, S., Kececioglu, J.: Freeia: robust optimal factories in metabolic reaction networks, version 1.0. http://freeia.cs.arizona.edu (2023)

  19. Li, Y., McGrail, D.J., Latysheva, N., et al.: Pathway perturbations in signaling networks: Linking genotype to phenotype. Sem. in Cell Dev. Bio. 99, 3–11 (2020)

    Article  Google Scholar 

  20. Ritz, A., Avent, B., Murali, T.: Pathway analysis with signaling hypergraphs. IEEE/ACM Trans. on Comp. Bio. and Bioinf. 14(5), 1042–1055 (2017)

    Google Scholar 

  21. Ritz, A., Murali, T.: Pathway analysis with signaling hypergraphs. In: Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB). pp. 249–258 (2014)

    Google Scholar 

  22. Ritz, A., Tegge, A.N., Kim, H., et al.: Signaling hypergraphs. Trends Biotechnol. 32(7), 356–362 (2014)

    Article  Google Scholar 

  23. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24(4), 427–433 (2006)

    Article  Google Scholar 

  24. Vidal, M., Cusick, M.E., Barabási, A.L.: Interactome networks and human disease. Cell 144(6), 986–998 (2011)

    Article  Google Scholar 

  25. Zarecki, R., Oberhardt, M.A., Reshef, L., et al.: A novel nutritional predictor links microbial fastidiousness with lowered ubiquity, growth rate, and cooperativeness. PLoS Comput. Biol. 10(7), 1–12 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anna Ritz for sharing the BioPax parser, and the anonymous referees for their useful comments. Research supported by the National Science Foundation through grants CCF-1617192 and IIS-2041613 to JK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer Krieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krieger, S., Kececioglu, J. (2024). Computing Robust Optimal Factories in Metabolic Reaction Networks. In: Ma, J. (eds) Research in Computational Molecular Biology. RECOMB 2024. Lecture Notes in Computer Science, vol 14758. Springer, Cham. https://doi.org/10.1007/978-1-0716-3989-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3989-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-1-0716-3988-7

  • Online ISBN: 978-1-0716-3989-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation