Molecular Dynamics Simulations in Protein–Protein Docking

  • Protocol
  • First Online:
Protein-Protein Docking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2780))

  • 5 Accesses

Abstract

Concerted interactions between all the cell components form the basis of biological processes. Protein–protein interactions (PPIs) constitute a tremendous part of this interaction network. Deeper insight into PPIs can help us better understand numerous diseases and lead to the development of new diagnostic and therapeutic strategies. PPI interfaces, until recently, were considered undruggable. However, it is now believed that the interfaces contain “hot spots,” which could be targeted by small molecules. Such a strategy would require high-quality structural data of PPIs, which are difficult to obtain experimentally. Therefore, in silico modeling can complement or be an alternative to in vitro approaches. There are several computational methods for analyzing the structural data of the binding partners and modeling of the protein–protein dimer/oligomer structure. The major problem with in silico structure prediction of protein assemblies is obtaining sufficient sampling of protein dynamics. One of the methods that can take protein flexibility and the effects of the environment into account is Molecular Dynamics (MD). While sampling of the whole protein–protein association process with plain MD would be computationally expensive, there are several strategies to harness the method to PPI studies while maintaining reasonable use of resources. This chapter reviews known applications of MD in the PPI investigation workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma W, Mayr C (2018) A Membraneless Organelle associated with the endoplasmic reticulum enables 3’UTR-mediated protein-protein interactions. Cell 175:1492–1506.e19. https://doi.org/10.1016/j.cell.2018.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hardenberg M, Horvath A, Ambrus V et al (2020) Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci 117:33254–33262. https://doi.org/10.1073/pnas.2007670117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Javanainen M, Hammaren H, Monticelli L et al (2013) Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discuss 161:397–417. https://doi.org/10.1039/C2FD20085F

    Article  CAS  PubMed  Google Scholar 

  4. Webby MN, Oluwole AO, Pedebos C et al (2022) Lipids mediate supramolecular outer membrane protein assembly in bacteria. Sci Adv 8:eadc9566. https://doi.org/10.1126/sciadv.adc9566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gupta K, Donlan JAC, Hopper JTS et al (2017) The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541:421–424. https://doi.org/10.1038/nature20820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guidotti G (1972) Membrane Proteins. Annu Rev Biochem 41:731–752. https://doi.org/10.1146/annurev.bi.41.070172.003503

    Article  CAS  PubMed  Google Scholar 

  7. Sowers AE, Hackenbrock CR (1981) Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci 78:6246–6250. https://doi.org/10.1073/pnas.78.10.6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindén M, Sens P, Phillips R (2012) Entropic tension in crowded membranes. PLoS Comput Biol 8:e1002431. https://doi.org/10.1371/journal.pcbi.1002431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tian A, Baumgart T (2009) Sorting of lipids and proteins in membrane curvature gradients. Biophys J 96:2676–2688. https://doi.org/10.1016/j.bpj.2008.11.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parton DL, Klingelhoefer JW, Sansom MSP (2011) Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys J 101:691–699. https://doi.org/10.1016/j.bpj.2011.06.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao VS, Srinivas K, Su**i GN, Kumar GNS (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:1–12. https://doi.org/10.1155/2014/147648

    Article  CAS  Google Scholar 

  12. Nevola L, Giralt E (2015) Modulating protein–protein interactions: the potential of peptides. Chem Commun 51:3302–3315. https://doi.org/10.1039/C4CC08565E

    Article  CAS  Google Scholar 

  13. London N, Raveh B, Schueler-Furman O (2013) Druggable protein–protein interactions – from hot spots to hot segments. Curr Opin Chem Biol 17:952–959. https://doi.org/10.1016/j.cbpa.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  14. Neklesa TK, Winkler JD, Crews CM (2017) Targeted protein degradation by PROTACs. Pharmacol Ther 174:138–144. https://doi.org/10.1016/j.pharmthera.2017.02.027

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Lee Y, Jung YM et al (2022) Discovery of E3 ligase ligands for target protein degradation. Molecules 27:6515. https://doi.org/10.3390/molecules27196515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tompa P, Fuxreiter M, Oldfield CJ et al (2009) Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays 31:328–335. https://doi.org/10.1002/bies.200800151

    Article  CAS  PubMed  Google Scholar 

  17. Rakers C, Bermudez M, Keller BG et al (2015) Computational close up on protein–protein interactions: how to unravel the invisible using molecular dynamics simulations? WIREs Comput Mol Sci 5:345–359. https://doi.org/10.1002/wcms.1222

    Article  CAS  Google Scholar 

  18. Zhao C, Shukla D (2018) SAXS-guided enhanced unbiased sampling for structure determination of proteins and complexes. Sci Rep 8:17748. https://doi.org/10.1038/s41598-018-36090-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ko SK, Berner C, Kulakova A et al (2022) Investigation of the pH-dependent aggregation mechanisms of GCSF using low resolution protein characterization techniques and advanced molecular dynamics simulations. Comput Struct Biotechnol J 20:1439–1455. https://doi.org/10.1016/j.csbj.2022.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590. https://doi.org/10.1038/267585a0

    Article  CAS  PubMed  Google Scholar 

  21. Perilla JR, Goh BC, Cassidy CK et al (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74. https://doi.org/10.1016/j.sbi.2015.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shan Y, Kim ET, Eastwood MP et al (2011) How does a drug molecule find its target binding site? J Am Chem Soc 133:9181–9183. https://doi.org/10.1021/ja202726y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oliveira Bortot L, Bashardanesh Z, van der Spoel D (2020) Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation. J Chem Inf Model 60:322–331. https://doi.org/10.1021/acs.jcim.9b00971

    Article  CAS  PubMed  Google Scholar 

  25. Robustelli P, Piana S, Shaw DE (2020) Mechanism of coupled folding-upon-binding of an intrinsically disordered protein. J Am Chem Soc 142:11092–11101. https://doi.org/10.1021/jacs.0c03217

    Article  CAS  PubMed  Google Scholar 

  26. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151. https://doi.org/10.1016/S0009-2614(99)01123-9

    Article  CAS  Google Scholar 

  27. Hénin J, Lelièvre T, Shirts MR et al (2022) Enhanced sampling methods for molecular dynamics simulations. Liv J Comput Mol Sci 4(1):1583

    Google Scholar 

  28. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238. https://doi.org/10.1093/nar/gkn216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glashagen G, de Vries S, Uciechowska-Kaczmarzyk U et al (2020) Coarse-grained and atomic resolution biomolecular docking with the ATTRACT approach. Proteins Struct Funct Bioinforma 88:1018–1028. https://doi.org/10.1002/prot.25860

    Article  CAS  Google Scholar 

  30. Kurcinski M, Badaczewska-Dawid A, Kolinski M et al (2020) Flexible docking of peptides to proteins using CABS-dock. Protein Sci Publ Protein Soc 29:211–222. https://doi.org/10.1002/pro.3771

    Article  CAS  Google Scholar 

  31. Best RB, Buchete N-V, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophys J 95:L07–L09. https://doi.org/10.1529/biophysj.108.132696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patapati KK, Glykos NM (2011) Three force fields’ views of the 310 Helix. Biophys J 101:1766–1771. https://doi.org/10.1016/j.bpj.2011.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Best RB, Mittal J (2010) Protein simulations with an optimized water model: cooperative Helix formation and temperature-induced unfolded state collapse. J Phys Chem B 114:14916–14923. https://doi.org/10.1021/jp108618d

    Article  CAS  PubMed  Google Scholar 

  34. Best RB, Zheng W, Mittal J (2015) Correction to balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theory Comput 11:1978–1978. https://doi.org/10.1021/acs.jctc.5b00219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen F, Liu H, Sun H et al (2016) Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Phys Chem Chem Phys 18:22129–22139. https://doi.org/10.1039/C6CP03670H

    Article  CAS  PubMed  Google Scholar 

  36. Ingólfsson HI, Lopez CA, Uusitalo JJ et al (2014) The power of coarse graining in biomolecular simulations. WIREs Comput Mol Sci 4:225–248. https://doi.org/10.1002/wcms.1169

    Article  CAS  Google Scholar 

  37. Baaden M, Marrink SJ (2013) Coarse-grain modelling of protein–protein interactions. Curr Opin Struct Biol 23:878–886. https://doi.org/10.1016/j.sbi.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  38. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824. https://doi.org/10.1021/jp071097f

    Article  CAS  PubMed  Google Scholar 

  39. Marrink SJ, Tieleman DP (2013) Perspective on the Martini model. Chem Soc Rev 42:6801. https://doi.org/10.1039/c3cs60093a

    Article  CAS  PubMed  Google Scholar 

  40. Souza PCT, Alessandri R, Barnoud J et al (2021) Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 18:382–388. https://doi.org/10.1038/s41592-021-01098-3

    Article  CAS  PubMed  Google Scholar 

  41. Davtyan A, Schafer NP, Zheng W et al (2012) AWSEM-MD: protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. J Phys Chem B 116:8494–8503. https://doi.org/10.1021/jp212541y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Machado MR, Barrera EE, Klein F et al (2019) The SIRAH 2.0 Force field: Altius, Fortius. Citius J Chem Theory Comput 15:2719–2733. https://doi.org/10.1021/acs.jctc.9b00006

    Article  CAS  PubMed  Google Scholar 

  43. Sahoo A, Lee P-Y, Matysiak S (2022) Transferable and polarizable coarse grained model for proteins—ProMPT. J Chem Theory Comput 18:5046–5055. https://doi.org/10.1021/acs.jctc.2c00269

    Article  CAS  PubMed  Google Scholar 

  44. Stark AC, Andrews CT, Elcock AH (2013) Toward optimized potential functions for protein–protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI Coarse-Grained Force Field. J Chem Theory Comput 9:4176–4185. https://doi.org/10.1021/ct400008p

    Article  CAS  Google Scholar 

  45. Lamprakis C, Andreadelis I, Manchester J et al (2021) Evaluating the efficiency of the Martini Force Field to study protein dimerization in aqueous and membrane environments. J Chem Theory Comput 17:3088–3102. https://doi.org/10.1021/acs.jctc.0c00507

    Article  CAS  PubMed  Google Scholar 

  46. Schäfer LV, de Jong DH, Holt A et al (2011) Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc Natl Acad Sci 108:1343–1348. https://doi.org/10.1073/pnas.1009362108

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jarin Z, Newhouse J, Voth GA (2021) Coarse-Grained Force Fields from the perspective of statistical mechanics: better understanding of the origins of a MARTINI hangover. J Chem Theory Comput 17:1170–1180. https://doi.org/10.1021/acs.jctc.0c00638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Javanainen M, Martinez-Seara H, Vattulainen I (2017) Excessive aggregation of membrane proteins in the Martini model. PLoS One 12:e0187936. https://doi.org/10.1371/journal.pone.0187936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khan HM, Souza PCT, Thallmair S et al (2020) Capturing choline–aromatics cation−π interactions in the MARTINI Force Field. J Chem Theory Comput 16:2550–2560. https://doi.org/10.1021/acs.jctc.9b01194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsai M-Y, Zheng W, Balamurugan D et al (2016) Electrostatics, structure prediction, and the energy landscapes for protein folding and binding. Protein Sci 25:255–269. https://doi.org/10.1002/pro.2751

    Article  CAS  PubMed  Google Scholar 

  51. Zheng W, Schafer NP, Davtyan A et al (2012) Predictive energy landscapes for protein–protein association. Proc Natl Acad Sci 109:19244–19249. https://doi.org/10.1073/pnas.1216215109

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen M, Lin X, Zheng W et al (2016) Protein folding and structure prediction from the ground up: the atomistic associative memory, water mediated, structure and energy model. J Phys Chem B 120:8557–8565. https://doi.org/10.1021/acs.jpcb.6b02451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garg P, Semmler S, Baudouin C et al (2022) Misfolding-associated exposure of natively buried residues in mutant SOD1 facilitates binding to TRAF6. J Mol Biol 434:167697. https://doi.org/10.1016/j.jmb.2022.167697

    Article  CAS  PubMed  Google Scholar 

  54. McInnes L, Healy J, Astels S (2017) hdbscan: hierarchical density based clustering. J Open Source Softw 2:205. https://doi.org/10.21105/joss.00205

    Article  Google Scholar 

  55. Darré L, Machado MR, Brandner AF et al (2015) SIRAH: a structurally unbiased Coarse-Grained Force Field for proteins with aqueous solvation and long-range electrostatics. J Chem Theory Comput 11:723–739. https://doi.org/10.1021/ct5007746

    Article  CAS  PubMed  Google Scholar 

  56. Periole X, Huber T, Marrink S-J, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132. https://doi.org/10.1021/ja0706246

    Article  CAS  PubMed  Google Scholar 

  57. Lund M, Jönsson B (2003) A Mesoscopic Model for protein-protein interactions in solution. Biophys J 85:2940–2947. https://doi.org/10.1016/S0006-3495(03)74714-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pasquier C, Midtgaard SR, Polimeni M et al (2023) Anisotropic protein-protein interactions in dilute and concentrated solutions. J Colloid Interface Sci 629:794–804. https://doi.org/10.1016/j.jcis.2022.08.054

    Article  CAS  PubMed  Google Scholar 

  59. Qiao X, Jeon J, Weber J et al (2015) Mechanism of polymorphism and curvature of HIV capsid assemblies probed by 3D simulations with a novel coarse grain model. Biochim Biophys Acta BBA - Gen Subj 1850:2353–2367. https://doi.org/10.1016/j.bbagen.2015.08.017

    Article  CAS  Google Scholar 

  60. Sukeník L, Mukhamedova L, Procházková M et al (2021) Cargo release from nonenveloped viruses and virus-like nanoparticles: capsid rupture or pore formation. ACS Nano 15:19233–19243. https://doi.org/10.1021/acsnano.1c04814

    Article  CAS  PubMed  Google Scholar 

  61. Wang J, Arantes PR, Bhattarai A et al (2021) Gaussian accelerated molecular dynamics: principles and applications. WIREs Comput Mol Sci 11. https://doi.org/10.1002/wcms.1521

  62. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199. https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  63. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601. https://doi.org/10.1088/0034-4885/71/12/126601

    Article  CAS  Google Scholar 

  64. Miao Y, Feher VA, McCammon JA (2015) Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11:3584–3595. https://doi.org/10.1021/acs.jctc.5b00436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lange OF, Schäfer LV, Grubmüller H (2006) Flooding in GROMACS: accelerated barrier crossings in molecular dynamics. J Comput Chem 27:1693–1702. https://doi.org/10.1002/jcc.20473

    Article  CAS  PubMed  Google Scholar 

  66. Wang J, Alekseenko A, Kozakov D, Miao Y (2019) Improved modeling of peptide-protein binding through global docking and accelerated molecular dynamics simulations. Front Mol Biosci 6:112. https://doi.org/10.3389/fmolb.2019.00112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee H, Heo L, Lee MS, Seok C (2015) GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res 43:W431–W435. https://doi.org/10.1093/nar/gkv495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6:e18934. https://doi.org/10.1371/journal.pone.0018934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  70. Porter KA, **a B, Beglov D et al (2017) ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT. Bioinformatics 33:3299–3301. https://doi.org/10.1093/bioinformatics/btx216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. de Vries SJ, Rey J, Schindler CEM et al (2017) The pepATTRACT web server for blind, large-scale peptide–protein docking. Nucleic Acids Res 45:W361–W364. https://doi.org/10.1093/nar/gkx335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jakhmola S, Sk MF, Chatterjee A et al (2022) A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Comput Biol Med 148:105856. https://doi.org/10.1016/j.compbiomed.2022.105856

    Article  CAS  PubMed  Google Scholar 

  73. Zhou P, ** B, Li H, Huang S-Y (2018) HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res 46:W443–W450. https://doi.org/10.1093/nar/gky357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vajda S, Yueh C, Beglov D et al (2017) New additions to the ClusPro server motivated by CAPRI. Proteins 85:435–444. https://doi.org/10.1002/prot.25219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y-T, Cheng T-L (2021) Computational modeling of cyclic peptide inhibitor–MDM2/MDMX binding through global docking and Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 39:4005–4014. https://doi.org/10.1080/07391102.2020.1773317

    Article  CAS  PubMed  Google Scholar 

  76. Wang J, Miao Y (2020) Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): enhanced sampling and free energy and kinetics calculations of peptide binding. J Chem Phys 153:154109. https://doi.org/10.1063/5.0021399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pawnikar S, Miao Y (2022) Mechanism of peptide agonist binding in CXCR4 Chemokine receptor. Front Mol Biosci 9:821055. https://doi.org/10.3389/fmolb.2022.821055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang J, Miao Y (2022) Protein–protein interaction-Gaussian Accelerated Molecular Dynamics (PPI-GaMD): characterization of protein binding thermodynamics and kinetics. J Chem Theory Comput 18:1275–1285. https://doi.org/10.1021/acs.jctc.1c00974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miao Y, McCammon JA (2018) Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proc Natl Acad Sci 115:3036–3041. https://doi.org/10.1073/pnas.1800756115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603. https://doi.org/10.1103/PhysRevLett.100.020603

    Article  CAS  PubMed  Google Scholar 

  81. Dama JF, Rotskoff G, Parrinello M, Voth GA (2014) Transition-tempered metadynamics: robust, convergent metadynamics via on-the-fly transition barrier estimation. J Chem Theory Comput 10:3626–3633. https://doi.org/10.1021/ct500441q

    Article  CAS  PubMed  Google Scholar 

  82. Johnston JM, Wang H, Provasi D, Filizola M (2012) Assessing the relative stability of dimer interfaces in g protein-coupled receptors. PLoS Comput Biol 8:e1002649. https://doi.org/10.1371/journal.pcbi.1002649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang J, Ishchenko A, Zhang W et al (2022) A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein–protein and protein–ligand binding potencies. Sci Rep 12:2024. https://doi.org/10.1038/s41598-022-05875-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barducci A, Bonomi M, Prakash MK, Parrinello M (2013) Free-energy landscape of protein oligomerization from atomistic simulations. Proc Natl Acad Sci 110. https://doi.org/10.1073/pnas.1320077110

  85. della Longa S, Arcovito A (2016) A dynamic picture of the early events in Nociceptin binding to the NOP receptor by metadynamics. Biophys J 111:1203–1213. https://doi.org/10.1016/j.bpj.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Polish National Agency for Academic Exchange within the Bekker NAWA Programme, project PANALLOS, grant number BPN/BEK/2021/1/00408/U/00001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Bartuzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cieślak, D., Kabelka, I., Bartuzi, D. (2024). Molecular Dynamics Simulations in Protein–Protein Docking. In: Kaczor, A.A. (eds) Protein-Protein Docking. Methods in Molecular Biology, vol 2780. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3985-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3985-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3984-9

  • Online ISBN: 978-1-0716-3985-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation