Scarless Baculovirus Genome Editing Using Lambda-Red Recombineering in E. coli

  • Protocol
  • First Online:
Baculovirus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2829))

  • 70 Accesses

Abstract

Baculoviruses are widely used for their potential as biological pesticide and as platform for the production of recombinant proteins and gene therapy vectors. The Baculovirus Expression Vector System (BEVS) is used for high level of expression of (multiple) proteins in insect cells. Baculovirus recombinants can be quickly constructed by transposition of the gene(s) of interest into a so-called bacmid, which is a baculovirus infectious clone maintained as single-copy, bacterial artificial chromosome in Escherichia coli. A two-step homologous recombineering technique using the lambda-red system in E. coli allows for scarless editing of the bacmid with PCR products based on sequence homology. In the first step, a selection cassette with 50 bp homology arms, typically generated by PCR, is inserted into the designated locus. In the second step, the selection cassette is removed based on a negative selection marker, such as SacB or rpsL. This lambda-red recombineering technique can be used for multiple gene editing purposes, including (large) deletions, insertions, and even single point mutations. Moreover, since there are no remnants of the editing process, successive modifications of the same bacmid are possible. This chapter provides detailed instructions to design and perform two-step homologous recombineering of baculovirus bacmid DNA in E. coli. We present two case studies demonstrating the utility of this technique for creating a deletion mutant of the chitinase and cathepsin genes and for introducing a single point mutation in the baculovirus gene gp41. This scarless genome editing approach can facilitate functional studies of baculovirus genes and improve the production of recombinant proteins using the BEVS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23

    Article  PubMed  Google Scholar 

  2. Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579. https://doi.org/10.1128/jvi.67.8.4566-4579.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pijlman GP, van Schijndel JE, Vlak JM (2003) Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol 84:2669–2678. https://doi.org/10.1099/vir.0.19438-0

    Article  CAS  PubMed  Google Scholar 

  4. Hilton S, Kemp E, Keane G, Winstanley D (2008) A bacmid approach to the genetic manipulation of granuloviruses. J Virol Methods 152:56–62. https://doi.org/10.1016/j.jviromet.2008.05.015

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Deng F, Pijlman GP et al (2003) Cloning of biologically active genomes from a Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus isolate by using a bacterial artificial chromosome. Virus Res 97:57–63. https://doi.org/10.1016/j.virusres.2003.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Rohrmann GF (2019) The AcMNPV genome: gene content, conservation, and function. In: Baculovirus molecular biology, 4th edn. National Center for Biotechnology Information, Bethesda, pp 1–84

    Google Scholar 

  7. Kaba SA, Salcedo AM, Wafula PO et al (2004) Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins. J Virol Methods 122:113–118. https://doi.org/10.1016/j.jviromet.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  8. Olszewski J, Miller LK (1997) A role for baculovirus GP41 in budded virus production. Virology 233:292–301. https://doi.org/10.1006/viro.1997.8612

    Article  CAS  PubMed  Google Scholar 

  9. Warming S (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36–e36. https://doi.org/10.1093/nar/gni035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Westenberg M, Soedling HM, Mann DA et al (2010) Counter-selection recombineering of the baculovirus genome: a strategy for seamless modification of repeat-containing BACs. Nucleic Acids Res 38:e166–e166. https://doi.org/10.1093/nar/gkq596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang H, Bian X, **a L et al (2014) Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 42:e37–e37. https://doi.org/10.1093/nar/gkt1339

    Article  CAS  PubMed  Google Scholar 

  12. Muyrers J (1999) Rapid modification of bacterial artificial chromosomes by ET- recombination. Nucleic Acids Res 27:1555–1557. https://doi.org/10.1093/nar/27.6.1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, He A, Zong Y et al (2023) Improvement of protein production in baculovirus expression vector system by removing a total of 10 kb of nonessential fragments from Autographa californica multiple nucleopolyhedrovirus genome. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1171500

  14. Pijlman GP, Grose C, Hick TAHH et al (2020) Relocation of the attTn7 transgene insertion site in bacmid DNA enhances baculovirus genome stability and recombinant protein expression in insect cells. Viruses 12:1448. https://doi.org/10.3390/v12121448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stavropoulos TA, Strathdee CA (2001) Synergy between tetA and rpsL provides high-stringency positive and negative selection in bacterial artificial chromosome vectors. Genomics 72:99–104. https://doi.org/10.1006/geno.2000.6481

    Article  CAS  PubMed  Google Scholar 

  16. Galibert L, Savy A, Dickx Y et al (2018) Origins of truncated supplementary capsid proteins in rAAV8 vectors produced with the baculovirus system. PLoS One 13:e0207414. https://doi.org/10.1371/journal.pone.0207414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee HH, Miller LK (1979) Isolation, complementation, and initial characterization of temperature-sensitive mutants of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol 31:240–252. https://doi.org/10.1128/jvi.31.1.240-252.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Motohashi T, Shimojima T, Fukagawa T et al (2005) Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem Biophys Res Commun 326:564–569. https://doi.org/10.1016/j.bbrc.2004.11.060

    Article  CAS  PubMed  Google Scholar 

  19. Pijlman GP, Dortmans JCFM, Vermeesch AMG et al (2002) Pivotal role of the non-hr origin of DNA replication in the genesis of defective interfering baculoviruses. J Virol 76:5605–5611. https://doi.org/10.1128/jvi.76.11.5605-5611.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorben P. Pijlman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Jong, L.A., van Oosten, L., Pijlman, G.P. (2024). Scarless Baculovirus Genome Editing Using Lambda-Red Recombineering in E. coli. In: Cox, M.M. (eds) Baculovirus. Methods in Molecular Biology, vol 2829. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3961-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3961-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3960-3

  • Online ISBN: 978-1-0716-3961-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation